1 Morphological $\mathbf{A n d} \mathbf{P}_{\text {hysiological }}$ Traits

Morphological and Physiological Traits

Note: Levy and Feldman $\{797\}$ studied the inheritance of more than 20 morphological and biochemical traits in crosses of four T. dicoccoideslines and T. durum. Similarly, K uspira et al. $\{744\}$ studied 12 qualitative characters in T. monococcum. The symbols applied to the characters examined in these studies are not being reserved and listed in the Catal ogue. H owever, both studies should serve as bases for future work.

1.Gross Morphology: Spike characteristics

Major hexaploid wheat types are categorized into groups with respect to three major gene pairs; viz. Q, C and S1 \{1038\}.

1. Common wheat Q c S1 v: vulgare group.
2. Club wheat Q C S1 v: compactum group.
3. Shot wheat Q c s1 v: sphaerococcum group.
4. Spelt wheat q c S1 v: spelta group (including vavilovi).

The majority of hexaploid wheat stocks are already, or can be readily, classified into these groups.
Diploid wheat is assumed to be q. Durum and carthlicum groups have the genotype Q c S1 \{1049\}.

1.1. Squarehead/spelt

$\boldsymbol{Q}\{881\}$. [k\{1550\}]. 5AL\{1293\}. v: Common wheats. CS. ma: Complete linkage with cDNA clone PtAq22\{0127\}.
$\boldsymbol{q}\{881\}$. [K\{1550\}]. v: Macha wheats; spelt wheats; vavilovi wheats. s: CS ${ }^{*} 8 /$ White Spring Spelt 5A\{1048\}. ma: Cent - Xrsq805(Empb)-5A - 4.6cM - Q - 4.3cM - Xpsr370-5A\{419\}; Q was physically mapped in 5AL, fraction length 0.87 , bracketed by deletions 5AL-7 and 5AL-23\{446\}; Q - 9.3cM - Xpsr370-5A\{9903\}.
The speltoid phenotype of at least some spelts may be caused by genes at other loci $\{0140\}$. Fine mapping of the 20 cM region possessing Q and delimited by deletions 5AL -7 and -23 is reported in $\{0324\}$.
1.2. Club

C\{1517\}. Although gene C may be present in some forms of group macha \{1447\}, it is not universally present. Tsunewaki $\{1500\}$ found that compact spike in one form was controlled by polygenes. [Cd\{047\}]]. 2D\{1192\}.2DL\{1192,1517\}. i: S-615*11/Elgin\{1500\}. s: CS* $6 /$ Poso 2D\{1304\}; CS*5/Red Egyptian 2D\{1304\}. v: Club wheats. QTL: Six QTLs for spike compactness were detected in Courtot/Chinese Spring but only 4 on chromosome arms 1AL, 2BS, 2DS and 4AS were consistent for at least two years $\{0114\}$.
Although gene C may be present in some forms of group macha \{1447\}, it is not universally present. Tsunewaki $\{1500\}$ found that compact spike in one form was controlled by polygenes.

1.3. Sphaerococcum

The naturally-occurring sphaerococcum gene in chromosome 3D and various mutant alleles conferring a similar phenotype form a homoeologous series. The sphaerococcoid alleles are either recessive or incompletely dominant. All three mapped loci are closely linked to the

$2 \quad$ Morphological $\mathbf{A n d} \mathbf{P}_{\text {hysiological }}$ Traits

respective centromeres $\{0030\}$. The "a" alleles are allocated to Chinese Spring or "normal" wheats.
s2. Partially dominant\{1286\}. [sp2\{1286\}]. v: Sphaerococcoid wheats. "Sphaerococcum simulator"\{1286\}.
Sphaerococcum-like tetraploid wheats were reported $\{122,475,1282,1286\}$, but comparisons between them, or with s2, were not made. Whereas Schmidt \& Johnson $\{1281\}$ reported a single recessive controlling the sphaerococcum character in tetraploid wheat, Joppa\{621\} using the same stock found that two recessive genes were necessary to produce this phenotype.
S-A1 $\{0029\}$. 3A\{0056\}. v: CS 00029$\}$.
S-A1a\{0029\}. v: CS\{0029\}; common wheats $\{0029\}$.
S-A1b\{0029\}. [S3\{0056\}]. v: MS 1453\{0056\}. ma: Xgwm2-3A(S)-5.1cM-S-A1-6.6 cM - Xgwm720-3A(L) \{0030\}.
S-B1\{0029\}. 3B\{0030\}. v: CS\{0029\}.
S-B1a\{0029\}. v: CS\{0029\}; common wheats $\{0029\}$.
S-B1b\{0029\}. [S2\{0030\}]. v: MSK $2452\{0056\}$; MSK 2454\{0056\}. ma: Xgwm6853B(S) - 4.2 cM - S-B1-0.5 cM - Xgwm566/Xgwm845/cent\{0030\}.
S-D1\{0029\}. 3D\{1292,0030\}.3DS\{1193,1194\}.3DL\{692\}. v: CS\{0029\}.
S-D1a\{0029\}. v: CS\{0029\}; common wheats\{0029\}.
S-D1b $\{0029\}$. [s1, sp1\{1286\}]. i: S-615* $11 /$ T. sphaerococcum var. rotundatum $\{1500\}$. s: CS*7/T. sphaerococcum rubiginosum 3D\{1304\}. v: Sphaerococcum wheats $\{0029\}$.
S-D1c\{0029\}. [S1\{0056\}]. v: MS 3287\{0056\}. ma: Xgdm72-3D(S)-8.0 cM - S-D12.9 cM - Xgwm456-3D/cent\{0030\}.

1.4. Branched spike

Synonymns: branched head, four-rowed spike, supernumerary spikelet, tetrastichon spikelet. bh $\{665\}$. 2AS $\{665,9907\}$. dv: PI $349056\{665\}$.

A chromosome 2B gene of minor effect was identified $\{9907\}$ and an inhibitor was associated with chromosome 2D\{9907\}. In a monosomic analysis of the hexaploid line LYB with supernumerary spikelets, Peng et al. \{9908\} located recessive genes in chromosome 2A and 4 A that promote the development of supernumerary spikelets and a gene in chromosome 2D that prevents their expression.

1.5. Elongated glume

Elongated glume is the phenotype associated with the polonicum group of tetraploid wheats. Expression in hexaploid wheat is much reduced compared with tetraploids. Matsumura \{911\} reported linkage of gene P and a gene for red coleoptiles implicating chromosomes 7A or 7B. A different gene was subsequently located in chromosome 7B \{9990\}.
P1. $\left[P\{911\}, E g\{922\}, P-A^{\text {pol }} 1\{0254\}, P-A^{\text {pet }} 1\{0254\}\right]$. 7AL \{922,1547\}.7A or 7B (based on linkage of 0.2 with a gene for red coleoptile) $\{922\}$. i: Saratovskaya29* $8 / /$ Novsibirskaya 2 $67^{*} 2 / T$. polonicum $\{922\}$. itv: P-LD222 $=$ LD222 ${ }^{*} 11 /$ T. turgidum var polonicum $\{1546,1547\}$. tv: T. polonicum $\{0254\}$; T. petropavlovskyi\{0254\}. ma: Xgwm260-7A(S) - 2.3cM - P1-5.6cM - Xgwm1083-7A(L)\{0254\}; Xgwm890-7A - 2.1cM P1\{0254\}; Xgwm260-7AS-2.3cM - P1 $1^{\text {pol }}-5.6 c \mathrm{M}-\mathrm{Xgwm1083-7AL}$ \{0254\}; Xgwm890-7AS $-2.1 \mathrm{cM}-$ P $^{\text {pet }}\{0254\}$.
Note: The loci determining elongated glumes in T. turanicum and T. durum conv. falcatum are not homoeologous to the P loci in the centromeric region of the group 7 chromosomes $\{0254\}$.

$3 \quad$ Morphological $\mathbf{A n d} \mathbf{P}_{\text {hysiological }}$ Traits

P2\{9990\}. 7BL $\{9990\}$. ti: LD222*7/T. ispahanicum $\{9990\}$. tv: T. ispahanicum $\{9990\}$. According to $\{0254\}$ the loci of T. polonicum, T. petropavlovsky and T. isphanicum are allelic ('homoeoallelic') whereas other workers had claimed genes in the first two forms were not allelic. Wang et al $\{0254\}$ however concluded that loci bearing alleles for elongated glumes in T. turanicum and T. durum conv. falcatum were not part of the above series.

1.6. Ear length

QEI.ocs-5A.1 $\{0068\}$. 5AL $\{0068\}$. v: CS(T. spelta 5A)/CS(Cappelle-Desprez 5A) RI mapping population\{9903\}. ma: Associated with Xbcd9-5A\{0068\}.

2.Accumulation of Abscisic Acid

A QTL was mapped on 5AL between Xpsr575-5A \{proximal\} and Xpsr426-5A \{distal\} \{1180\}.

3.Alkylresocinols Content in Grain

Ar1 $\{0281\}$. High alkylresocinols content is dominant $\{0281\}$. 5AL \{0281\}. tv: Langdon\{0281\}.
$\boldsymbol{a r 1}\{0281\}$. tv: Ardente\{0281\}; This cultivar has a low content compared to all tested durum and common wheats $\{0281\}$.

4.Aluminium Tolerance

Alt1 $\{234\}$. v: ET3 $=$ Carazinho $/ 4^{*}$ Egret $\{234\}$.
alt1 $\{234\}$. v: ES3 $=$ Carazinho $/ 4^{*}$ Egret $\{234\}$.
Alt2 $\{848\}$. [Alt $_{\text {BH }}\{1213\}$]. 4DL $\{848\}$. su: T. turgidum cv. Langdon 4D(4B)\{848\}. ma: Alt2 was mapped to a 4 cM interval flanked by $\operatorname{Xpsr} 914$ and $\operatorname{Xpsr} 1051\{848\}$; on a consensus 4B-4D map of T. aestivum; Alt2-1.1 cM - Xbcd1230-4D\{1213\}. v: BH1146\{1213,0115\}; IAC-24\{0115\}; IAC-60\{0115\}; 13 induced mutants of Anahuac\{0115\}. ma: Alt2 cosegregated with $X b c d 1230-4 D$ and fell within the interval $X g d m 125-4 D-4.8 \mathrm{cM}$ - Alt2 1.1cM - Xpsr914-4D\{0248\}.

5.Anthocyanin Pigmentation

5.1. Purple anthers.

A single, dominant factor was reported $\{1326\}$.
Pan1\{921\}. 7DS \{921\}. v: Ilyitchevka\{921\}; Mironovskaya 808\{921\}; Novosibirskaya $67\{921\}$; Pyrothrix $28\{921\}$; Saratovskaya $210\{921\}$; Strela\{921\}; Ukrainka\{921\}. tv: T. polonicum $\{921\}$.
Pan2. 7AS\{9959\}. tv: T. turgidum ssp. dicoccoides acc. MG4343\{9959\}. ma: Pan2-9.2 cM - Rc1-12.2 cM - Xutv1267-7A (proximal)\{9959\}.

5.2. Purple/Red auricles. Purple leaf base

For review see $\{1641\}$.
Melz and Thiele \{983\} described a "purple leaf base" phenotype where anthocyanin

$4 \quad$ Morphological $\mathbf{A n d} \mathbf{P}_{\text {hysiological }}$ Traits

pigmentation extended to the leaf base as well as auricles. Purple leaf base was expressed only when pigmentation occurred in the coleoptiles.
Ra1. [Ra\{1645\}]. 1D Gulyeeva\{474\}.(cited in\{983\}).2D\{1645\}. v: Kenya 58\{1645\}.
Ra2\{983\}. 4B\{983\}.
Ra3\{983\}. 6B\{983\}.
An5\{983\}. 5R\{983\}.

5.3. Red/purple coleoptiles.

There is an orthologous gene series on the short arms of homoeologous group 7. The 'a' alleles confer red coleoptiles.
Rc-A1a\{0250\}. [Rc1, R\{401\}]. 7A\{769,1293\}.7AS\{0250\}. s: CS ${ }^{*} 6 /$ Hope 7A\{1293\}. v: Hope Rc-B1\{1293\}. tv: T. turgidum ssp. dicoccoides acc. MG4343\{9959\}. ma: Pan2 9.2cM - Rc1-12.2cM - Xutv1267-7A(proximal)\{9959\}; Rc-A1(distal) - 11.9cM - Xgwm9137A\{0250\}.
Rc-B1a. [Rc2, R2\{401\}]. 7B\{742\}.7BS\{401,769,0250\}. s: CS ${ }^{*} 6 /$ Hope 7B\{769\}. v: Hope Rc-A1. ma: Xgwm263-7B-26.1cM - Rc-B1-11.0cM - Xgwm1184-7B\{0250\}.
Rc-D1a\{0250\}. [Rc3]. 7D\{596\}.7DS\{1241,1444,0250\}. v: Mironovskaya 808\{1444\}; Tetra Canthatch/Ae. squarrosa var. strangulata RL 5271, RL 5404\{1240\}; Tetra Canthatch/Ae. squarrosa var. meyeri RL 5289, RL 5406\{1240\}; Sears' T. dicoccoides /Ae. Squarrosa = Sears' Synthetic\{596\}. ma: Rc-D1 (distal) - 3 cM - Xpsr108-7D\{180\}; Xgwm44-7D 6.4cM - Rc-D1-13.7cM - Xgwm111-7D\{0250\}.

Tahir \& Tsunewaki\{1453\} reported that T. spelta var. duhamelianum carries genes promoting pigmentation on chromosomes 7A and 7D and genes suppressing pigmentation on 2A, 2B, 2D, 3B and 6A. Sutka\{1444\} reported a fourth factor in chromosome 6B and suppressors in 2A, 2B, 2D, 4B and 6A.

5.4. Purple/red culm/straw/stem.

Purple or red colour is dominant.
Pc1\{743\}. [Pc\{743\}]. 7B\{743\}.7BS\{768\}. s: CS ${ }^{*} 6 /$ Hope 7B $\{743,768\}$. itv: LD222*11/CS (Hope 7B $\}\{1546\}$. ma: Pc (proximal) - $5.7 \mathrm{cM}-X p s r 490(S s 1)-7 B\{110\}^{2}$.
Pc2\{921\}. 7DS\{921\}. v: Ilyitchevka\{921\}; Mironovskaya 808\{921\}; Novosibirskaya 67\{921\}; Pyrothrix 28\{921\}; Saratovskaya 210\{921\}; Strela\{921\}; Ukrainka\{921\}.

5.5. Purple grain/pericarp

Genes for purple pericarp have been transferred from tetraploid wheats to the hexaploid level $\{112,214,941,1138\}$. At the hexaploid level duplicate genes $\{112,941\}$ and complementary genes $\{112,939,1138,438\}$ were reported. At the tetraploid level, duplicate-gene $\{941\}$ and single-gene $\{1327\}$ inheritances were observed. Purple colour is dominant and may be affected by environment and genetic background. Complementary genes were located in chromosomes 3A and 7B \{1138\}. Possible pleiotropic relationships of genes affecting pigmentation of various tissues have not been studied in detail. Pc2 and Rc-B1a may be the same gene $\{769\}$. Also, complementary genes involved in determination of purple pericarp could be related to culm colour \{112\}.
For review, see $\{1643\}$.
Complementary dominant genes.
Pp1\{041\}. 6A\{041\}. i: Saratovskaya $29^{*} 8 /$ Purple \{Australia\} Pp2\{040\}.
Pp2\{041\}. 7A\{041\}. tv: T. durum Desf. subsp. abyssinicum Vav\{040\}.
Piech and Evans $\{1138\}$ located complementary genes on chromosomes 3A and 7B.

6.Awnedness

hd b1 b2. Bearded or fully awned genotype

6.1. Dominant inhibitors

6.1.1. Hooded

Hd\{1551\}. 4AS \{1195,1293\}. i: S-615* $11 / \mathrm{CS}\{1500\}$. v: Chinese Spring B2\{1293\}. ma: Xcdo1387-4A-8.2cM - Hd - 7.2cM - Xpsr163-4A\{0047\}.
was mapped as a QTL with a peak on Xfba78-4A in $\{0309\}$.
hd. s: $\mathrm{CS}^{*} 6 /$ Hope 4A; CS*5/Thatcher 4A; CS* $6 /$ Timstein 4A.

6.1.2. Tipped 1

B1 $\{1551\}$. 5 AL $\{1293,0242\}$. i: S- $615^{*} 11 /$ Jones Fife\{1500\}. v: Timstein $\{741\}$; Redman $\{160\}$.
B1 was mapped as a QTL with a peak on Xwmc182-6B \{0309\}.
B1a\{041\}. s: Saratovskaya $29^{*} 8 /$ Festiguay $5 \mathrm{~A}\{041\}$.
B1b $\{041\}$. s: Saratovskaya $29^{*} 8 /$ Aurora 5A $\{041\}$.
B1c $\{041\}$. s: Saratovskaya 29*8/Mironskaya 808 5A\{041\}.
In a common genetic background, carriers of B1a have the shortest tip-awned phenotype; carriers of B1b and B1c have awns 2 to 3 times longer depending on environment. In F1 hybrids, differences between the substitution line combinations are significant. The postulation of B1 in both CS and Courtot $\{0309\}$ based on the phenotype of a CS deletion stock is not supported by genetic observations

6.1.3. Tipped 2

B2 $\{1551\}$. $6 \mathrm{BL}\{1293,1297\}$. i: S-615*11/CS\{1500\}. v: Chinese Spring Hd\{1293\}.
b2. s: CS $^{*} 6 /$ Hope 6B; CS ${ }^{*} 5 /$ Thatcher 6B; CS*9/Timstein 6B.

6.1.4. Awnless

Genotypes Hd B2 (e.g., Chinese Spring) and B1 B2 (e.g., Federation) are awnless. Presumably Hd B1 is awnless. Watkins \& Ellerton $\{1551\}$ noted the probability of a third allele "b1a" leading to a half-awned condition, and in discussion they consider the possibility of a similar third allele at the $B 2$ locus. In view of more recent cytogenetic analyses, it seems that the half-awned condition could result from epistatic interactions between the alleles B1 and/or B2 and various promotor genes.
Although hooded, half-awned, tip-awned and awnless variants occur among tetraploid wheats, these are relatively infrequent. It has not been established with certainty that the above inhibitors are involved.
The inhibitor alleles have a pleiotropic effect on glume-beak shape \{1348\}. Acuminate beak is associated with full beardedness and occurs only in b1 b2 types. B2 reduces beak length producing an acute beak shape. B1 reduces beak length producing an obtuse beak shape. In this effect $B 1$ is epistatic to $B 2$.

6.2. Promotors

The effects of (recessive) awn-promoting genes were documented in a number of studies, mainly through monosomic and disomic F1 comparisons, and in tetraploids, whereas Heyne \& Livers $\{549\}$ provided genetic evidence of their effects. A series of "a" genes was documented, but the evidence supporting the existence of at least some of these was not well supported. Hence symbols for this gene series are not recognized.

6.3. Smooth awns

Smooth-awned tetraploid wheats were reported $\{016,045,690,1259\}$ and genetic analyses $\{016,045,690\}$ suggested a single recessive factor, with modifiers in most instances, relative to rough awns. The phenotype has not been reported in hexaploid wheats. No gene symbol is applied.

7.Basal Sterility in Speltoids

The presence of gene Q ensures the fertility of the first and subsequent florets in wheat spikelets $\{378\}$. In speltoids lacking Q, fertility of the second and subsequent florets is ensured by the dominant allele Bs (designated A in $\{378\}$) located on chromosome 5D \{377\}. In the presence of Bs the fertility of the first floret is under polygenic control. In $b s$ bs speltoids floret development is under polygenic control, and stocks with varying levels of basal fertility were isolated.
All group vulgare genotypes so far studied carry Bs.
The following stocks were described $\{378\}$:

Genotype			
Approx. sterile-base score			
Group vulgare	---	$Q Q B s B s$	0.00
Speltoids	StFF	$q q B s B s$	0.00
	StF	$q q B s B s$	0.08
	St1A	$q q B s B s$	0.39
	St1	$q q B s B s$	0.96
	St2	$q q b s b s$	1.41

8.Blue Aleurone

The Ba allele in T. monococcum spp. aegilopoides acc. G3116 determines a half-blue seed phenotype and is different from the allele present in Elytrigia pontica that determines a solid blue phenotype \{282\}. They are treated as different genes. For review see $\{1643\}$.
Ba1 $\{643\}$. Derived from Elytrigia pontica $(2 \mathrm{n}=70)$. [Ba\{643\}]. 4B[4BS-4el $\left.{ }_{2}\right]\{643\}$. tr: UC66049B\{594\}.
Ba2. $4 \mathrm{~A}^{\mathrm{m}} \mathrm{L}\{282\}^{3}$. dv: G3116\{282\}. ma: Ba2 cosegregated with Xcdo1387-4A, Xmwg677$4 A$ and Xbcd1092-4A \{282\}.

9.Brittle Rachis

Br1 $\{9970\}$. 3DS\{9970\}. v: T. aestivum var. tibetanum $\{9970\}$.
Br2\{0130\}. 3A\{0130\}. sutv: LDN(DIC 3A) 00130$\}$.

7
 Morphological And $\mathbf{P}_{\text {hysiological }}$ Traits

Br3\{0130\}. 3B $\{0130\}$. sutv: LTN(DIC 3B) $\{0130\}$.
Evidence for a homoeologous series extending to many related species is discussed in $\{0130\}$.

10.Boron Tolerance

Genes controlling tolerance to high concentrations of soil boron act additively.
Bo1\{1111,1113\}. 7B\{177\}. v2: Halberd Bo2Bo3.
Bo2\{1111,1113\}. v2: (W1 ${ }^{*}$ MMC)/Warigal Bo3. Halberd Bo1 Bo3.
Bo3\{1111,1113\}. 4A\{0012\}. v2: Warigal Bo2. Halberd Bo1 Bo2.
Very sensitive genotype: Kenya Farmer bo1 bo2 bo3.

11.Cadmium Uptake

11.1. Low cadmium uptake

Cdu1 \{963\}. [Cdu1\{1128\}]. dv: Biodur\{1128\}; Hercules\{1128\}; Nile\{1128\}.
cdu1\{963\}. [cdu 1\{1128\}]. dv: Kyle\{1128\}. ma: Cdu1-4.6cM - OPC-20\{1128\}; Cdu1 21.2 cM - UBC-180\{1128\}.

12.Chlorophyll Abnormalities

12.1. Virescent

V1. 3B $\{122,1311,1294\} .3 B S\{1423\}$. v: CS.
v1a. [v\{1294\}]. i: S-615*11/Neatby's Virescent\{1500\}. s: CS ${ }^{*} 9 /$ Neatby's Virescent\{1304\}. v: Neatby's Virescent\{1055\}.
v1b. i: $C^{*} / H e r m s e n ' s ~ V i r e s c e n t ~ v 2 b\{1304\}$. v: Hermsen's Virescent $v 2 b\{1311\}$.
V2. 3A\{1311,1545\}. v: CS.
v2a. v: Viridis $508\{1545\}$.
v2b.Expressed only when combined with $v 2 b$ i: $\mathrm{CS}^{*} /$ Hermsen's Virescent $v 1 a\{1304\}$. v: Hermsen's Virescent v1a\{1311\}.
$v 1 b$ and $v 2 b$ are expressed only when both are present. Corresponding normal alleles are designated $V 1\{3 \mathrm{~B}\}$ and $V 2\{3 \mathrm{~A}\}$ following Sears' $\{1295\}$ demonstration of their effects on the expression of $v 1 a$.

12.2. Chlorina

Cn-A1. 7A\{1132\}.7AL\{1131,1304,1311\}. v: CS.
cn-A1a. [cn1a]. i: Chlorina-1\{1311\}.
cn-A1b. [cn1b]. i: Cornell Wheat Selection 507aB-2B-21/6* $\mathrm{CS}\{1133\}$.
cn-A1c. [cn2]. i: Chlorina-448. (CS background) $\{1545\}$.
cn-A1d\{665\}. dv: CDd6\{665,666\}.
Cn-B1. 7BL $\{1131\}$. v: Chinese Spring $\{1131\}$.
cn-B1a\{665\}. dv: CDd1 6665,666$\} ; \mathrm{CBC}-\mathrm{CDd} 1\{665\}$.
cn-B1b\{665\}. dv: CDd2\{665,666\}.
Cn-D1. [Cn3]. 7D\{1545\}.7DL\{1131\}. v: Chinese Spring\{1131\}.
cn-D1a. [cn-D1,cn3]. i: Chlorina-214\{1545\}. v: CD3\{1583\}.

12.3. Striato-virescens

8
 Morphological $\mathbf{A n d} \mathbf{P}_{\text {hysiological }}$ Traits

A mutant of this type was described $\{376\}$ but has been lost.

13.Cleistogamous Flowering in Durums

Cleistogamy, a rare flowering habit in durum wheats, is controlled by a single recessive gene relative to chasmogamy $\{191\}$.
Cleistogamous genotypes clcl.tv: HI8332 \{191\}; WH880 \{191\}.
Chasmogamous genotypes CICI .tv: IWP5308 \{191\}; PWB34 \{191\}; WH872 \{191\}.

14.Copper Efficiency

Copper efficiency is a genetic attribute that enhances plant growth in copper deficient soil.
$\boldsymbol{C e}\{1276\} .4 B L=$ T4BL. $5 R L\{1276\} . \quad$ v: Cornell Selection 82a1-2-4-7\{462\}; Backcross derivatives of Cornell Selection to Oxley, Timgalen, Warigal \{464\}; Hairy necked Viking\{1276\}.
5BS = T5BS.5RL.ad:CS+5R\{463\}. su: CS 5R\{5D\}\{463\}. v: Sears' stock HN-2\{464\}; Backcross derivatives to Warigal and Timgalen\{464\}.

15.Corroded

co1. [co\{1297\}]. 6BS\{1293\}. v: Sears' corroded mutant.
co2. $6 \mathrm{D}\{1570\}$. v: Kurrachee $\{1570\}$.
A gene(s) in chromosome 6A acts as an inhibitor of corroded $\{1039,1570\}$.

16.Crossability with Rye and Hordeum and Aegilops spp.

16.1. Common wheat

High crossability of some wheats, particularly those of Chinese origin, viz. Chinese 446 \{790\}, Chinese Spring \{1216\}, and TH 3929 \{939\}, with cereal rye, weed rye (S. segetale L.) $\{1646\}$, and other species, e.g., Aegilops squarrosa $\{691\}$, Hordeum bulbosum $\{1387,1397,1469\}$ and H. vulgare $\{349,693]$, is determined by additive recessive genes. The kr genes influence crossability with H. vulgare. Allele kr1 is more potent in suppressing crossability than Kr 2 which is stronger in effect than Kr 3 \{1387\}. According to Zheng et al. \{1649\}, the effect of Kr 4 falls between $\mathrm{Kr1}$ and Kr 2 .
Kr1. 5B\{1216\}.5BL\{762\}.
kr2. 5A\{1216\}.5AL \{1387\}.
kr3. 5D.
kr4. 1A\{1649\}.
kr1 kr2. v: Chinese 446\{790\}; Chinese Spring\{762,1216,1025\}; Martonvarsari 9*4/CS\{1016\}.
Kr1 kr2. s: CS* ${ }^{*}$ /Hope 5B\{762,1216\}. v: Blausamtiger Kolben $\{790\}$.
kr1 Kr2. s: CS ${ }^{*} 6 /$ Hope $5 \mathrm{~A}\{1216\}$.
Kr1 Kr2. v: Marquis\{790\}; Peragis\{790\}.
kr1 kr2 kr3 kr4. v: J-11\{1649\}.
Kr1 Kr2/Kr1 kr2. (heterogeneous). v: Martonvarsari 9\{1016\}.
Using the Chinese Spring/Cheyenne chromosome substitution series, Sasaki \& Wada \{1265\} found significant differences in crossability for chromosome 5B, 7D, 1D and 4B. Differences between rye lines also occur $\{1265,1458\}$. Allelic variation in the potency of the dominant suppressor genes was reported $\{1385,343\}$. Evidence for allelic variation in dominant supressors is reported in $\{1386\}$. Lists of wheat/rye crossabilities: $\{1383,1642,850,858\}$.

$9 \quad$ Morphological And \mathbf{P} hysiological Traits $^{\text {rat }}$

QTL: 65\% of the variability in a Courtot/CS population was associated with Xfba-3675A(5AS), Xwg583-5B(5BL) and Xtam51-7A\{0134\}. Only the second QTL appears to coincide with known locations of Kr genes.

16.2. Tetraploid wheat

The Chinese tetraploid, Ailanmai, possesses recessive crossability genes on chromosomes 1A, 6 A and 7 A with the 6A gene being the least effective $\{0017\}$.

17.Dormancy (Seed)

Phs $\{9960\}$. Semi-dominant $\{9960\}$. 7D\{9960\}. v: Soleil\{9960\}. ma: Associated with Xpsr1327-4A\{0346\}.
QTL: Several QTL for falling number and alpha-amylase activity, two indicators for preharvest sprouting resistance, were identified in $\{0169\}$. The most significant were associated with Xglk699-2A and Xsfr4(NBS)-2A, Xglk80-3A and Xpsr1054-3A, Xpsr1194-5A and Xpsr918-5A, Xpsr644-5A and Xpsr945-5A, Xpsr8(Cxp3)-6A and Xpsr563-6A, and Xpsr350$7 B$ and Xbzh232(Tha)-7B \{0169\}.
In cross AC Domain/Haruyutaka, one major QTL in chromosome 4AL and two lesser possibly homomeologous QTLs for dormancy in 4BL and 4DL \{0226\} were found. Tolerance to preharvest sprouting (PHS) in the cross SPR8198/HD2329 was associated with Xwmc104-6B and Xmst101-7D \{0032\}. QTL for preharverst sprouting were identified on chromosomes 3A (associated with Xfbb293-3A at $\mathrm{P}=0.01$), 3B (associated with Xgwm403-3B and $X b c d 131-3 B$ at $\mathrm{P}=0.001$), 3D (associated with $X g w m 3-3 D$ at $\mathrm{P}=0.001$) and 5 A (associated with $X b c d 1871-5 A$ at $\mathrm{P}=0.001$) in the population Renan/Recital \{0347\}. The resistant alleles on the group 3 chromosomes and on 5A were contributed by Renan and Recital, respectively. All QTL for preharvest sprouting co-located with QTL for grain colour \{0347\}

18.Ear Emergence

QEet.ocs-4A.1\{0047\}. 4AL\{0047\}. v: CS/CS(Kanto107 4A) mapping population. ma: Associated with $W x$-B1 $\{0047\}$.
QEet.ocs-5A. 1 \{0068\}. 5AL\{0068\}. v: CS(T. spelta 5A)/CS(Cappelle-Desprez 5A) RI mapping population $\{9903\}$. ma: Associated with Xcdo584-5A and morphological locus $Q\{0068\}$.
QEet.ocs-5A.2\{0026\}. 5AL 00026$\}$. ma: Xcdo 412-5A - Xbcd9-5A region $\{0026\}$.
QEet.ipk-2D $\{0255\}$. QEet.ipk-2D coincides with a QTL for flowering time, QFlt.ipk-2D. Both QTLs may correspond to Ppd-D1 \{0255\}. 2DS\{0255\}. v: Opata/W-7984 (ITMI) RI mapping population $\{0255\}$; Lateness was contributed by $\mathrm{W}-7984\{0255\}$. ma: Associated with Xfba400-2D and Xcdo1379-2D\{0255\}.
QEet.ipk-5D\{0255\}. QEet.ipk-5D coincides with a QTL for flowering time, QFlt.ipk-5D. Both QTLs probably correspond to Vrn-D1 \{0255\}. 5DL $\{0255\}$. v: Opata/W-7984 (ITMI) RI mapping population $\{0255\}$; Lateness was contributed by $\mathrm{W}-7984\{0255\}$. ma: Associated with $X b c d 450-5 D\{0255\}$.

19.Earliness Per Se

Genes for earliness per se $\{0023\}$ affect aspects of developmental rate that are independent of responses to vernalization and photoperiod.

Eps-1 $\boldsymbol{A}^{m}\{0364\}$. [Eps-A 1 1]. 1AL $\{0364\}$. dv:: T. monococcum. DV92 allele for late flowering, G3116 early flowering.\{0364\}. ma:: 0.8 cM distal to Xwg241 \{0364\}. Eps-A1a\{0024\}. 3A\{0023\}.3AL\{0024\}. v: Chinese Spring\{0024\}.
Eps-A1b\{0024\}. v: Timstein\{0024\}.
epsCnn\{0025\}. v: Cheyenne\{0025\}.
EpsWi\{0025\}. 3A $\{0025\}$. su: Cheyenne ${ }^{*} 7 /$ Wichita $3 \mathrm{~A}\{0025\}$. ma: Linked to QTLs for plant height, kernel number per spike, and 1,000-kernel weight in RSLs derived from CNN/CNN(WI3A) $\{0025\}$.
QTL: Analysis in Courtot/CS \{0132\}.

20.Flowering Time

QFlt.ipk-3A\{0255\}. 3AL\{0255\}. v: Opata/W-7984 (ITMI) RI mapping population\{0255\}; Lateness was contributed by W-7984\{0255\}. ma: Associated with Xbcd451-3A\{0255\}.

21.Flour Colour

Loci controlling flour colour were identified and mapped in a recombinant inbred population derived from hexaploid wheat cultivars Schomburgk and Yarralinka \{9936\}. Regions in 3A and 7A accounted for 13% and 60% of the genetic variation, respectively, and $\mathrm{Xbc} c 828-3 A$, Xcdo347-7A and Xwg232-7A. 1 were significantly associated with flour colour. The association was highly significant in all three replicates only for the 7A QTL. Symbols were not assigned to the flour colour loci.

22.Free-threshing Habit

QFt.mgb-5A\{0046\}. 5AL\{0046\}. tv: Messapia/T. dicoccoides MG4343 mapping population\{0046\}. ma: Associated with XksuG44-5A\{0046\}.
QFt.mgb-6A\{0046\}. 6A\{0046\}. tv: Messapia/T. dicoccoides MG4343 mapping population\{0046\}. ma: Associated with $X p s r 312-6 A\{0046\}$.

23.Frost Resistance

Fr1\{1446\}. 5AL\{1446\}. v: Hobbit\{1446\}. ma: Mapped to the mid-region of 5AL, 2.1 cM distal from Xcdo504-5A and Xwg644-5A and proximal to Xpsr426-5A\{419\}; Mapped 2cM proximal to Xwg644-5A and Vrn-A1\{0291\}; and flanked by deletion points 0.67 and $0.68\{0292\}$.
Fr2\{0291\}. 5DL\{0291\}. s: CS**/Cheyenne 5D $\{0291\}$. ma: $\operatorname{Fr} 2$ mapped 10 cM proximal to Vrn-D1\{0291\}.
QWin.ipk-6A. 6AS\{0255\}. v: Opata/W-7984 (ITMI) RI mapping population\{0255\}; Winter hardiness was contributed by W-7984\{0255\}. ma: Associated with $X f b a 85-6 A$ and Xpsr10(Gli-2)-6A\{0255\}.
Responses to cold exposure and their genetics are reviewed in $\{0020,0274\}$.

24.Gametocidal Genes

24.1. Gametocidal activity

Gc1-B1a\{1485\}. [Gc1a\{1490\},Gc1\{1487\}]. 2B\{1490\}. i: CS**/Aegilops speltoides. subsp. aucheri\{1487\}.

Gc1-B1b\{1485\}. [Gc1b\{1490\}]. 2B\{1490\}. i: S*8/Ae. Speltoides subsp. ligustica\{1490\}. Gc1-C1\{0188\}. 2CL\{0189\}. ad: CS/2C\{0189\}. su: CS2C(2A), CS2C(2B), CS2C(2D)\{0189\}.
Gc1-SI1 1485$\}$. [Gc-S $\left.{ }^{1} 3\{1485\}\right] .2 S^{1}\{334\}$. ad: CS/Ae. sharonensis $\{334\}$.
Gc2-SI1a\{1485\}. [Gc-S $\left.{ }^{1} 1\{1485\}\right]$. $4 S^{1}\{866\}$. ad: CS/Ae. longissima $\{866\}$.
Gc2-Sl1b\{1485\}. [Gc-S $\left.{ }^{1} 2\{1485\}\right]$. S $^{1}\{1013\}$. ad: S/Ae. sharonensis $\{1013\}$.
Gc3-C1\{1485\}. [Gc-C\{1485\}]. 3C\{333\}. ad: CS/Ae. triuncialis\{338\}.
Gc1-B1a, Gc1-B1b and Gc1-S ${ }^{1}$, classified in the same functional group, are hypostatic to the genes $G c 2-S^{1} 1 a$ and $G c 2-S^{1} 1 b$. Gc3-C1 does not interact with the Gc genes in the other two groups. In addition to these genes, chromosomes carrying gametocidal genes occur in $A e$. caudata $\{337\}$ and $A e$. cylindrica $\{336\}$ and other strains of $A e$. longissima and $A e$.
sharonensis $\{335,1484\}$.
Gametocidal genes in chromosomes in the same homoeologous group have the same gametocidal action $\{0190\}$. In monosomic additions of chromosomes with gametocidal effects, chromosome deletions and translocations are produced in gametes not having the gametocidal genes. This feature has been exploited to isolate genetic stocks suitable for physical mapping of wheat $\{0191\}$ chromosomes, and of rye $\{0192\}$ and barley $\{0193,0194,0195\}$ chromosomes in a wheat background.
Genes with gametocidal activity (Sd1 \{1647\} and Sd2 \{1161\}) in wheat are present in homoeologous group 7 chromosomes of Thinopyrum elongatum $\{653,1647\}$. A segment earlier believed to be derived from Thin. distichum $\{889,892\}$ is probably the same as that from Thin. elongatum \{1162\}.
In the presence of both Sd1 and Sd2, Lr19 is transmitted preferentially in heterozygotes, the degree of distortion being determined by genetic background. In heterozygotes with the same background, and in the presence of only Sd2, Lr19 shows strong self-elimination. Based on these results, it seems likely that the Sears' translocation 7D-7Ag\#7 does not carry Sd1 \{939\}. See also Pollen Killer.
Sd1 \{1647\}. 7D\{1647\}. v2: Agatha $\operatorname{Sd2} 21647,1161\}$.
Sd2\{1161\}. 7BL\{1163\}. v: 88M22-149\{1163,1161\}.

24.2. Suppression of gametocidal genes

Igc1\{1489\}. Causes suppression of the 3C chromosome gametocidal gene of Ae. triuncialis. This alien gametocidal factor also promotes chromosome breakage \{1486\}. 3B\{1488\}. v: Norin 26\{1483,1488\}; Nineteen wheats listed in\{1483,1488\}.
igc1. v: Chinese Spring\{1483,1488\}; Forty wheats are listed in\{1483,1488\}.

25.Gibberellic Acid Response (insensitivity)

Gai1. [GAI1\{565,1246\}]. 4B\{406\}.4BS \{980\}. i: See\{408\}. v: Norin 10 Der.\{565; List in 407 \}. ma: Xpsr622-4B (distal) - 1.9 cM - Gai1-8.3 cM - Xbcd110-4B (proximal)\{9959\}. tv: Messapia\{9959\}.
Gai2. [GAI2\{565,1246\}]. 4D\{411\}.4DS\{980\}. i: See\{408\}. v: Maris Hobbit\{411\}; Norin 10 Der.\{565\}; List in\{407\}.
Gai3. [GAI3\{565,1246\}]. 4B\{413\}.4BS \{980\}. i: See\{408\}. v: Minister Dwarf\{413\}; Selection D6899\{359\}; Tom Thumb\{405\}; Tom Thumb Der.\{565,567\}.
In wheats with Gai3, the aleurone layer fails to respond to applied GA $\{405\}$. Two studies involving crosses between Tom Thumb derivatives and tall parents suggested that gibberellic acid insensitivity and reduced height were controlled by one gene, i.e., Gai3 $\{359,413\}$. In a third study involving a Tom Thumb derivative, recombinants were isolated,

12
 Morphological And $\mathbf{P}_{\text {hysiological }}$ Traits

indicating separate but linked genes, i.e., Gai3 and Rht-B1c \{565,567\}. Further evidence was obtained for linkage between genes for gibberellic acid insensitivity and Norin 10 genes for reduced height in hexaploid $\{568\}$ and durum $\{720\}$ wheats. Hu \& Konzak $\{567\}$ reported 27% recombination between Gai1 and Rht-B1b and 10\% recombination between Gai2 and Rht-D1b in hexaploid wheats involving Norin 10 and Suwon 92 derivatives. In durum derived from crosses involving Norin 10, 15% recombination was obtained between one of the genes for reduced height and gibberellic acid insensitivity \{1246,1247\}. Gale \& Law \{403\} considered Gai1 and Rht-B1b, Gai2 and Rht-D1b, Gai3/ and Rht-B1c to be pleiotropic genes.

26.Glaucousness (Waxiness/Glossiness)

Glaucousness refers to the whitish,wax-like deposits that occur on the stem and leaf-sheath surfaces of many graminaceous species. The expression of glaucousness depends on the arrangement of wax deposits rather than the amount of wax $\{603\}$. Non-glaucous variants also occur and genetic studies indicate that non-glaucousness can be either recessive or dominant. Recessive forms of non-glaucousness are apparently mutants of the genes that produce the wax-like deposits.
Dominant non-glaucous phenotypes (as assessed visually) appear to be due to mutations that affect the molecular structure, and reflectance, of the wax-like substances $\{10001\}$. The genes involved in wax production and the "inhibitors" are duplicated in chromosomes 2B and 2D. There appear to be independant genes for wax production and "inhibitors"
$\{912,1493,10001\}$. In earlier issues of the gene catalogue the two kinds of genes were treated as multiple alleles $\{1432\}$. All forms of wild and cultivated einkorn are non-glaucous \{10001\}.
Orthologous loci occur in barley chromosome 2HS (gs1, gs6, gs8) \{467\}, rye chromosome 7RL (wa1) $\{725\}$ and maize (gl2) $\{211\}$.
A gene for spike glaucousness, Ws, was mapped distally on the short arm of chromosome 1B in the cross T. durum cv. Langdon / T. dicoccoides acc. Hermon H52 \{0171\}.

26.1. Genes for glaucousness

W1. 2BS\{267,1493\}. i: Chinese Spring mono-2D/S615//10*wS615\{10001\}. v: Chinese Spring\{1493\}. itv: LD222*11/T. turgidum var. pyramidale recognitum\{1546\}. v2: S615 W2\{10001\}.
$\boldsymbol{w 1}$. Recessive allele for reduced glaucousness. 2BS $\{1432\}$. v: CS mono-4B mutant $\{1064\}$; Mentana\{1432\}; Salmon\{1493\}.
W2. i: Chinese Spring mono-2B/S615//11*wS615\{10001\}. v: T. compactum cv. No 44\{10001\}. v2: S615 W1 10001$\}.$
W2a. dv: Glaucous forms of Ae. tauschii.
W2b. v: Chinese Spring - weak hypomorph recognized at increased dosage\{1432\}.
A non-glaucous spike phenotype in line L-592, a $7 \mathrm{~S}(7 \mathrm{~A})$ substition line, is described in \{0113\}.
w1w2\{10001\}. i: w-S615 = S615*11/Salmon\{10001\}. v: Salmon\{10001\}; Mentana\{1432\}; CS mono-4B mutant $\{1064\}$.

26.2. Epistatic inhibitors of glaucousness

Each inhibitor inhibits all genes for glaucousness.
Iw1 $\{10001\}$. [W1 $\left.{ }^{I}\{1493\}, I 1-W\{1493\}\right]$. 2BS $\{10001\}$. i: S615/Cornell 5075//10*S615\{10001\}.

$13 \quad$ Morphological And $\mathbf{P}_{\text {hysiological }}$ Traits

Iw2\{10001\}. [I2-W\{1493\}]. 2DS\{10001\}. i: S615/Golden Ball Synthetic//10-*S615\{10001\}. v: Golden Ball Synthetic\{10001\}; Vernal Synthetic\{10001\}. dv: Non-glaucous forms of Ae. tauschii\{1493\}.
Iw3\{277\}. [IW3\{277\},I3-W\{277\}]. 1BL\{277\}. tv: T. turgidum var. dicoccoides\{277\}. A non-glaucous spike phenotype in line L-592. A 7S(7A) substitution line, is described in \{0113\}.

27.Glume Colour and Awn Colour

27.1. Red (brown/bronze) glumes

The majority of studies report a single dominant gene for red glume colour. A few papers report two factors $\{1009,1477,1520\}$. Red glume colour in Swedish land cultivars is apparently associated with hairy glumes $\{1277\}$ suggesting, because Hg is located in chromosome 1A, that a red glume factor different from Rg 1 is involved in the Swedish stocks. Nothing was known of the possible association of such a gene with Bg , another glume colour gene on 1A. See $\{1640\}$ for review. A 1A gene, Rg 3 , was eventially identified by linkage with Gli-A1 $\{1405\}$ and shown to cosegregate with $\mathrm{Hg}\{624\}$.
Rg1. [Rg]. 1B\{1517\}.1BS\{369\}. s: CS*5/Red Egyptian 1B\{1304\}. v: Diamant I\{9906\}; Federation 41 11517\}; Highbury\{1121\}; Red Egyptian\{1304\}; T. petrapavlovskyi\{9906\}. v2: Milturum 321 Rg3\{9906\}; Milturum 553 Rg3\{9906\}; Strela Rg3\{9906\}. tv: Ward\{792\}. ma: Xytv1518-1B (distal)-7.7cM-Rg1-0.8cM - G1i-B1 (proximal)\{9959\}.
Rg2. Derived from Aegilops squarrosa. 1DL $\{769,1241\} .1 \mathrm{DS}$. i: Saratovskaya 29*5/T. timopheevii/T. tauschii\{9906\}. v: (Triticum dicoccoides/Ae. squarrosa)\{769\}; (Tetra Canthatch/Ae. squarrosa var. strangulata RL 5271), RL 5404\{1240\}; (Tetra Canhatch/Ae. squarrosa var. meyeri RL 5289), RL $5406\{648,1240\}$. dv: Aegilops squarrosa accessions.
QTL: QRg.ipk.1D was mapped in the Opata/W-7984 (ITMI) mapping population $\{0255\}$; Linkage with Gli-D1 implied Rg2. This QTL coincided with a QTL for awn colour, QRaw.ipk-1D\{0255\}.
$\boldsymbol{R g} 3\{924,562\}$. 1AS $\{924,562,9906\}$. i: Saratovskaya $29^{*} 3 / / F 2$ CS mono 1A/Strela\{924\}. v: CS/Strela Seln\{9906\}; Iskra\{9906\}; L'goskaya-47\{1405\}; L'govskaya-47\{1405\}; Zhnitstra\{9906\}. v2: Milturum 553 Rg1\{9906\}; Milturum 321 Rg1 \{9906\}; Strela Rg1 $\{9906,924\}$; Sobko \& Sozinov reported a further group of 30 international wheats which, by inference from their Gli-A1 alleles, probably carry Rg3. A linkage order of Glu-A1 - cent -$\mathrm{Hg}-\mathrm{Rg} 3$ was reported Strela $\mathrm{Rg} 1\{9906,924\}\{1405\}$.
Kovel $\{729\}$ described a brown or smokey-grey glume phenotype in T. aestivum var caesium K-28535. This phenotype was also present in accession K-40579 and botanical varieties cinereum, columbina and albiglaucum. Close linkage to Gli-D1 was shown and a gene designated Brg was assumed to be an allele of Rg 2 present in Ae. tauschii and synthetic hexaploid wheats. v: K-28535 \{729\}. i: ANK-23 = Novosibirskaya 67*10/ K-28535 \{729\}. A 1B gene controlling red glume colour was mapped in a cross between durum wheat cv . Messapia and T. turgidum ssp. dicoccoides acc. MG4343. ma: Xutv1518-1B (distal) - 7.7 cM - Rg1-0.8 cM - Gli-B1 (proximal) \{9959\}.

QRg.ipk-1D\{0255\}. This QTL coincides with a QTL for awn colour, QRaw.ipk-1D \{0255\}. 1DS 0255$\}$. v: Opata/W-7984 (ITMI) RI mapping population\{0255\}; The glume colour was contributed by W-7984\{0255\}. ma: Associated with Gli-D1\{0255\}.

27.2. Black glumes

14
 Morphological $\mathbf{A n d} \mathbf{P}_{\text {hysiological }}$ Traits

$\boldsymbol{B g}\{282,1304\} .1 \mathrm{~A}\{282,1304\} . \operatorname{s:} \mathrm{CS}^{*} 7 /$ Indian 1A\{1304\}. dv: G1777\{282\}; G3116\{282\}. ma: Bg and Nor9 co-segregated in T. monococcum $\{282\}^{3}$; Xutv1391-1A (distal) - 3cM - Bg 1.6cM - $\mathrm{Hg}-2.4 \mathrm{cM}$ - Gli-A1 (proximal)\{9959\}.

Bga\{282\}. [Bg(a)\{282\}]. dv: G1777.
Bgb\{282\}. [Bg(b)\{282\}]. dv: G3116.
$\boldsymbol{b g}\{282\}$. dv: DV92, G2528.
$B g a$ and $B g b$ are dominant and cause a solid black glume and a black line at the margins of the glume, respectively. $b g$ is recessive and confers non-black glumes.
A single factor for black glumes was reported in diploid, tetraploid and hexaploid wheats \{1347\}. Linkage with Hg was demonstrated at all levels of ploidy, indicating a common gene on chromosome 1A; Bg is epistatic to Rg .

27.3. Pseudo-black chaff

This is a blackening condition transferred from Yaroslav emmer to Hope wheat by McFadden at the same time as stem-rust resistance was transferred. The association of this condition with mature-plant stem-rust reaction (Sr2) has been noted in a number of papers. According to $\{742\}$, the condition is recessive. Pan $\{1102\}$ considered linkage with stem-rust reaction could be broken, but this seems unlikely.
Pbc. $3 \mathrm{~B}\{742\} .3 \mathrm{BS}$. s: CS* ${ }^{*}$ /Hope 3B\{742\}; CS ${ }^{*} 6 /$ Ciano $5 \mathrm{~B}\{939\}$.

27.4. Black-striped glumes

This phenotype was reported in group dicoccon. v: E4225 \{1417\}.

27.5. Inhibitor of glume pigment

An inhibitor of glume pigment was reported on chromosome 3A \{106\}.

27.6. Chocolate chaff

cc\{719\}. 7B\{719\}.7BS \{665\}. tv: Langdon mutant\{719\}; PI 349056\{665\}. dv: CBCCDd1\{665\}.
The chocolate chaff phenotype was suppressed by a gene(s) in chromosome 7D \{719\}.

27.7. Awn colour

The literature on awn colour is not clear. In general, awn colour is associated with glume colour $\{045\}$. Occasionally, however, awn colour and glume colour may be different. According to Panin \& Netsvetaev \{1103\}, black awns were determined by three complementary genes designated Bla1, Bla2, Bla3. Bla1 was located in chromosome 1A and linked with Gld 1A (= Gli-A1) and Hg .
QRaw.ipk-1A\{0255\}. 1AS\{0255\}. v: Opata/W-7984 (ITMI) RI mapping population\{0255\}; The awn colour was contributed by W-7984\{0255\}. ma: Associated with Gli-A1\{0255\}.
QRaw.ipk-1D\{0255\}. 1DS\{0255\}. v: Opata/W-7984 (ITMI) RI mapping population\{0255\}; The awn colour was contributed by W-7984\{0255\}. ma: Associated with Gli-D1\{0255\}.

28.Grain Hardness/Endosperm Texture

Grain hardness or endosperm texture significantly influences flour milling, flour properties and end-use. The difference in particle size index between a hard wheat (Falcon) and a soft wheat (Heron) was reported by Symes $\{1452\}$ to be due to a single major gene. Symes \{1452\} also found evidence for "different major genes or alleles" which explained differences amongst the hard wheats Falcon, Gabo and Spica. Using Cheyenne (CNN) substitution lines in CS and a Brabender laboratory mill, Mattern et al. \{915\} showed that the hard wheat milling and flour properties of Cheyenne were associated with 5D. Using Hope 5D substitution line in CS [CS(Hope 5D)] crossed to CS, and CS(Hope 5D) crossed to CS ditelosomic 5DL, Law et al. $\{777\}$ showed that grain hardness was controlled by alleles at a single locus on 5DS. The dominant allele, Ha, controlling softness was present in Chinese Spring and the allele for hardness, ha, was present in the other varieties mentioned. A similar study using CS (CNN5D) x CS recombinant inbred lines was reported by Morris et al. \{03106\}.
A pleiotropic result of hardness is the decreased level of a 15 kD starch granule protein, friabilin, on the surface of water-isolated starch $\{470\}$. In endosperm, soft and hard wheats have similar amounts of friabilin, consequently the distinction between the two textural types depends upon the manner in which the friabilin co-purifies with starch. Friabilin is also referred to by the name 'Grain Softness Protein' (GSP) \{0380\}, and was later shown to be comprised primarily of puroindoline a and puroindoline b $\{0295\}$. Grain hardness of reciprocal soft x hard F1 kernels was well correlated with friabilin occurrence on starch in triploid endosperm \{0381\}. See IV, Proteins: 5.8 Puroindoline. GSP-1 genes, which are closely related to puroindolines, are also listed in section 5.8.
Ha\{777\}. Soft phenotype. 5DS\{777\}. i:: Falcon/7*Heron, Heron/7*Falcon\{03109\}; Paha*2//Early Blackhull/5*Paha\{0203,0298\}; Early Blackhull Derivative/5*Nugaines\{0203,0298\}. v:: Chinese Spring \{777,03106\}; Cappelle Desprez \{470\}; Heron \{1452,470\}; Paha, Nugaines \{0203,0298\}; NY6432-18 \{0241\}.
$\boldsymbol{h a}\{777\}$. Hard phenotype i: Falcon/7*Heron, Heron/7*Falcon \{03109\}; Paha*2//Early Blackhull/5*Paha \{0203,0298\}; Early Blackhull Derivative/5*Nugaines \{0203,0298\}. s: CS*6/Cheyenne 5D \{915\}; CS*6/Hope 5D \{777\}; Cappelle Desprez/Besostaya 5D \{470\}. v: Falcon $\{1452,470\}$; Holdfast $\{470\}$; Early Blackhull, Early Blackhull
Derivative\{0203,0298\}; Cheyenne \{03106\}; Clark's Cream \{0241\}. ma: Ha was closely linked to Xmta9(Puil) - 5D \{1414\}.
Single factor effects on hardness were found for chromosome 2A, 2D, 5B and 6D, and interactive effects were found for chromosomes 5A, 6D and 7A \{1414\}.
The addition of King II rye chromosome 5R converted Holdfast wheat from hard to soft \{470\}. A 14.5 kD rye analogue was also isolated from 6x triticales which have soft texture $\{470\}$. All ryes are thought to have soft texture.
Two genes for grain hardness were reported in $\{055\}$.
Hard and soft NILs are listed in $\{0298\}$.
QTL: In a DH population of Courtot/CS a major locus in chromosome 5DS coincided with Ha; minor QTLs mapped in chromosomes 1A (associated with Xfba92-1A) and 6D (associated with Xgwm55-6D) $\{0141\}$.
Ten QTLs for kernel hardness (54 \% of the variation) were mapped in a cross 'Forno'/ 'Oberkulmer' spelt \{0280\}.

29.Grain Quality Parameters

29.1. Sedimentation value

Qsev.mgb-6A\{9920\}. 6AL \{9920\}. tv: Nessapia/T. dicoccoides MG4343 mapping population\{9920\}. ma: Associated with Xrsq805-6A\{9920\}.

16

Morphological $\mathbf{A n d} \mathbf{P}_{\text {hysiological }}$ Traits

Qsev.mgb-7A\{9920\}. 7BS\{9920\}. tv: Messapia/T. dicoccoides MG4343 mapping population\{9920\}. ma: Associated with Xpsr103-7A\{9920\}.
QTL: Associated with Glu-1 on chromosome arms 1AL and 1DL and Gli-1/Glu-3 on 1BS in RSLs from the cross Cheyenne (high quality)/CS (low quality) \{0251\}. Cultivar Cheyenne contributed the higher SDS sedimentation values $\{0251\}$. The QTL on 1AL coincided with a QTL for bread loaf volume $\{0251\}$. The QTL on 1DL and 1BS coincided with QTL for bread mixing time $\{0251\}$.

29.2. Flour, semolina and pasta colour

QTL: A QTL was detected on chromosome 7A \{9936\}. Cultivar Schomburgk contributed the yellow colour allele in a cross Schomburgk/Yarralinka \{9936\}. Markers Xcdo347-7A and Xwg232-7A accounted for 60% of the genetic variation $\{9936\}$. A Sequence Tagged Site PCR marker is available $\{0180\}$.
QTL: A major QTL was detected in the distal region of chromosome 7BL in the cross Omrabi 5/ T. dicoccoides 600545. The QTL explained 53\% of the variation and was completely linked to microsatellite marker Xgwm344-7B. Omrabi 5 contributed the allele for high level of yellow pigment. Two additional small QTLs were detected on 7AL \{0365\}. Other references to flour colour are given under Lr19 and Sr25.

29.3. Amylose content

Amylose content has a significant effect on industrial quality; for example, reduced amylose wheats perform better in some types of noodles. The waxy protein genes have an important influence, but other genes are also involved.
QAmc.ocs-4A.1\{0047\}. 4AS\{0047\}. v: CS/CS(Kanto107 4A) mapping population\{0047\}. ma: Associated with Xbcd1738-4A and Xcdo1387-4A\{0047\}.

29.4. Milling yield

QTL: A QTL was detected on chromosome 3A \{0181\}. Cultivar Schomburgk contributed an allele for the higher milling yield in cross Schomburgk/Yarralinka \{0181\}. RFLP markers Xbcd115-3A and Xpsr754-3A were associated with this QTL at LOD>3 \{0181\}. A QTL associated with Pinb on chromosome arm 5DS was detected in RILs from the cross NY6432-18/Clark's Cream \{0241\}. Cultivar Clark's Cream contributed the higher flour yield allele $\{0241\}$. This QTL coincided with QTL for hardness, hydration traits (dough water absorption, damaged starch and alkaline water retention capacity (AWRC)), and baked product traits (cookie diameter and cookie top grain) $\{0241\}$.

29.5. Alveograph dough strength W

QTL: QTLs for W were detected on chromosome arms 5DS (associated with Xmta10-5D), 1AS (associated with Xfba92-1A), and 3B (associated with XksuE3-3B) in cross Courtot/Chinese Spring $\{0141\}$. The first two QTLs coincided with those for hardness. Ten QTL for W (39\% of the variation), nine QTL for P (48% of the variation) and seven QTL for P:L (38\% of the variation) were mapped in Forno/Oberkulmer spelt $\{0280\}$.

29.6. Mixograph peak time

$17 \quad$ Morphological And $\mathbf{P}_{\text {hysiological }}$ Traits

QTL : A QTL associated with Glu-Dy1 on chromosome arm 1DL was detected in RILs from the cross NY6432-18/Clark's Cream \{0241\}. Clark's Cream contributed the higher mixograph peak time allele $\{0241\}$. This QTL coincided with a QTL for bread mixing time $\{0241\}$.

29.7. Starch characteristics

QTL: QTLs for starch viscosity and swelling were associated with the $W x$-B1 locus in the cross Cranbrook ($W x-B 1 a$) x Halberd (null $W x-B 1 b$). An additional QTL for starch viscosity was found on 7BL between markers Xgwm344-7B and Xwg420-7B in the first cross. This QTL disappeared when amylase activity was inhibited indicating that it was determined by the late maturing a-amylase activity contributed by Cranbrook. A QTL for starch viscosity was associated with the $W x$-A1 locus in the cross CD87/Katepwa $\{0362\}$.

30.Grass-Clump Dwarfness/Grass Dwarfness

Complementary dominant genes. Genotypes producing dwarfness: D1-D2-D3-, D1-D2D2, D1-D4-D3-D1-D2-D4 and D1-D4D4.
D1 $\{534\}$. [G\{972\}]. 2D\{534,939,1595\}.2DS\{942\}. s: CS* ${ }^{*} /$ Kenya Farmer 2D $\{1000\}$; CS* $6 /$ Timstein 2D\{534\}. v: Big Club $\{534\}$; Burt $\{1000\}$; Federation $\{942\}$; Mus $\{534\}$; Ramona $50\{358\}$; Selection $1403\{1000\}$. v2: Hermsen's pure-breeding dwarf D2\{1000\}; Falcon D3\{1172\}; Gabo D3\{944\}; Timstein D3\{534\}; Metzger's pure-breeding dwarf D2 D3\{1000\}.
D2\{534\}. [Bi\{972\}]. 2B\{536,574\}.2BL\{944\}. s: CS*7/Cheyenne 2B\{1000\}; CS* $4 /$ Red Egyptian 2B\{1000\}. v: Bezostaya 1\{1595\}; Crete-367\{1029\}; Desprez $80\{1595\}$; Florence\{1000\}; Kenya W744\{944\}; Loro\{1172\}; Mara\{1595\}; Marquis \{1000\}; Poros\{1595\}; Redman\{534,574,1001\}; Riebesel\{534\}; Tobari 66\{358\}. v2: Hermsen's pure-breeding dwarf $D 1\{534,1000\}$; Amby D3\{358\}; Cedar D3\{1000\}; Mendel D3\{534\}; Plantahof D3\{534\}; Spica D3\{944\}; Cappelle-Desprez D4\{1595\}; Brevor D4\{1000\}; Cheyenne $D 4\{1000\}$; Metzger's pure-breeding dwarf D1D3\{1000\}.
D3\{534\}. [A\{972\}]. 4A\{534,1595\}.4AL \{939\}. s: CS* $6 /$ Timstein 4A\{534,1000\}; CS* $7 /$ Kenya Farmer 4A\{534,1000\}. v2: Amby D1\{358\}; Falcon D1\{1172\}; Gabo D1 \{944\}; Kenya Farmer D1\{1000\}; Timstein D1\{534\}; Metzger's pure-breeding dwarf D1 D2\{1000\}.
D4\{1000\}. 2D\{1000,1595\}.2DL\{1598\}. s: CS**/Cheyenne 2D\{1000\}. v2: CappelleDesprez D2\{1595\}; Cheyenne D2\{1000\}; Brevor D2\{1000\}.
d1d2d3d4. v: Chinese Spring\{534,1000\}. Genotype lists in can be found in $\{358,534,972\}$. The effects of multiple allelism at $D 2$, and possibly at $D 1$, and modifying genes were demonstrated $\{1595\}$.
Knott \{683\} described a lethal dwarf condition controlled by a dominant gene closely linked with Sr30 (chromosome 5D) in Webster and a complementary recessive gene in LMPG. Phenotypes resembling grass clump dwarfs in hybrids carrying a 2BL.2RS translocation were reported in $\{916\}$. The complementary gene $\{\mathrm{s}\}$ in wheat was not $D 1, D 2$ or $D 3$. The effect was suppressed at high temperature.

31.Grain Weight

QTL : Variation at locus QGw1.ccsu-1A, associated with Xwmc333-1A, accounted for 15% of the variation in a RIL population from RS111/CS \{0143\}.

32.Hairy/Pubescent Auricles

Pa\{886,042\}. 4BS\{886,042\}. s: Saratovskaya 29*9/Yanetzkis Probat 4B\{886\}; Saratovskaya $29^{*} 5 /$ Shabati Sonora 4B $\{886\}$; Saratovskaya $29^{*} 4 /$ Siete Cerros 4B \{886\}. v: Diamant $1\{886\}$; Magali $\{886\}$; Pirotrix $28\{886\}$; Shabati Sonora\{886\}; Siete Cerros\{886\}; Ulyanovka 9 \{886\}.
pa. v: Gabo\{886\}; Saratovskaya $29\{886\}$; This phenotype is expressed in Diamant ditelo 4BL $\{886\}$.

33.Hairy Glume

$\boldsymbol{H g}\{1494\} .1 \mathrm{~A}\{1293\} .1 \mathrm{AS}\{947\}$. i: S-615*11/Jones Fife\{1500\}. s: CS ${ }^{*} 7 /$ Indian 1A\{1293\}. v: A well-known, widespread and easily identified dominant marker - few examples will be listed. Indian\{1293\}; Jones Fife\{1494\}; Prelude\{1494\}. itv: LD222*11/T. Turgidum var. durum melanops\{1546\}. tv: Golden Ball\{1342,1494\}. dv: T. monococcum lines\{1494\}. ma: Xutv1391-1A (distal) - 3cM - Bg - 1.6cM - $\mathrm{Hg}-2.4 \mathrm{cM}-\mathrm{Gli}-\mathrm{A1}$ (proximal) \{9959\}. A 1A gene controlling hairy glumes was mapped in a cross between durum cv. Messapia and T. turgidum ssp. dicoccoides acc. MG4343.

Hg1 \{1405\}. v: Ulyanovkn\{1405\}; Pionerskaya\{715,1405\}.
Evidence for multiple alleles in T. monococcum is given in $\{744\}$.
The likelihood of three alleles, hg (hairless), Hg 1 (weakly hairy) and Hg (very hairy), with hg 1 being recessive to Hg and causing a short (weak) hairy phenotype, was mentioned in \{1405\}.

34.Hairy Leaf

Hl1 \{0316\}. Weakly hairy. [HI\{884\}]. 4B\{884\}.4BL\{760\}. v: Artemovka\{925\}; Caesium 111\{925\}; Lutescens 53/12\{925\}; Lutescens 62\{925\}; Milturum 321\{884\}; Poltavka\{925\}; Pyrothrix $28\{925\}$; Saratov $321\{884\}$; Saratovskaya 29\{884,760\}; Sarrubra\{925\}.
hl1 hl2. v: Chinese Spring \{884\}.
Kuspira et al. $\{744\}$ provided evidence for at least three alleles at an Hl locus in T. monococcum.
HI2 $\{0316\}$. 7BS $\{0316\}$. v: Hong-mang-mai $\{0316\}$.

35.Hairy Leaf Sheath

Levy \& Feldman $\{795\}$ concluded that complementary genes determined hairy leaf sheath in T. dicoccoides.
$\boldsymbol{H s}\{795\}$. [Hls\{761\}]. v: Certain hexaploid derivates of G25 produced in Israel\{939\}. tv: T. dicoccoides G25\{761\}.
hs. v: Most hexaploid wheats\{939\}. tv: T. dicoccoides G7\{761\}.

36.Hairy Neck/Pubescent Peduncle

$\boldsymbol{H p}\{275\}$. Derived from Secale cereale
4BL \{T4B.5R\}\{274,275\}.i:S-615*11/CS Derivative\{1500\}.
5BS\{T5B-5R $\}\{1298\} . v: H N-2$ (CS type) $\{1298\}$.
6D\{T6D-5R\} \{1298\}.v:HN-1(CS type)\{1298\}.
4BL \{T4B.5R $\{274,275\}$. .v:CS Derivative $\{1304\}$.

37.Hairy Node/Pubescent Node

Inheritance of hairy (glabrous) node versus non-hairy node was attributed to a single, dominant gene difference $\{396,837,910,914\}$ and the $\mathrm{Hn} / \mathrm{hn}$ locus was shown to be linked with B1 (awn inhibitor). Observations on 5A trisomics and telosomics of Chinese Spring confirmed this location. Love \& Craig \{837\} studied a cross involving Velvet Node CI 5877, and Gaines \& Carstens $\{396\}$ studied an offtype single plant designated Velvet Node Wash. No. 1981.
Hn. 5AL. v: Aurore\{722\}; Fylgia\{722\}; Extra-Kolben II\{722\}; Marquis\{910\}; Tammi\{765\}; T. vulgare erythrospermum \{910\}. tv: T. polonicum vestitum $\{910\}$.
hn. v: Garnet\{722\}; Kimno\{722\}; Pika\{722\}; Timantii\{722\}.
Levy \& Feldman $\{795\}$ concluded that complementary genes determined hairy leaf sheath in T. dicoccoideds.

Multiple alleles were reported in T. monococcum $\{744\}$.

38.Heat tolerance

QTL: QTLs contributing to grain-filling duration (GFD) under high temperatures were associated with Xgwm11-1BS (11\% of variability) and Xgwm293-5AS (23\% of variability) in Ventnor (tolerant) // Karl 92 (Non-tolerant) \{0327\}.

39.Height

Ht is the general symbol.

39.1. Reduced Height : GA-insensitive

Rht-1 $\{371,0019\}$.
The Rht-1 homoeoloci are orthologous with the D8 locus in maize and the GAI locus in Arabidopsis. They encode proteins resembling nuclear transcription factors and are involved in sensing gibberellin levels $\{0019\}$. Common wheat and durum NIL pairs are listed in \{02102\}.
Rht-A1a\{0019\}. v: Chinese Spring\{0019\}; All wheats are assumed to be monomorphic.
Rht-B1\{116\}. 4B $\{109,406,1040\} .4 B S\{089,116\}$. ma,tv: Gai1/Rht-B1b-1.8cM - Xpsr622$4 B\{110\}$.
Rht-B1a\{116\}. v: Tall wheats\{116\}; e.g. Chinese Spring\{0019\}.
Rht-B1b $\{116\}$.Partially recessive $\{024\}$, recessive $\{357\}$, semi-dominant $\{408\}$.
[Rht1\{015\},Sd1\{015\}]. i: See\{408,414,02102\}. v: Frontier\{1597\}; Guardian\{1597\}; Selection 14-53/Burt, 5\{015\}; Siete Cerros\{407\}; Wren\{1174\}; WW15\{407\}. v2: Norin 10-Brevor, 14 Rht-D1b\{015\}; Oleson Rht-D1b\{357\}; Selection D6301 RhtD1b\{357\}; Shortim Rht-D1b\{243\}; See\{407,415,1062,1386\}. tv: Cocorit 71\{109,416\}; Creso\{109,416,451\}; Malavika\{1442\}; Mida\{450\}; Sansone\{109\}; Valgerado\{109,416\}; Valnova\{450\}; Valselva\{450\}.
The development of allele-specific primers for Rht-B1b was reported in $\{0378\}$.
QTL: QTL for reduced plant height, peduncle length and coleoptile length contributed by Cranbrook were associated with XcsMe1-4B (up to 49\% of variability for plant height and peduncle length and $27-45 \%$ of variability for coleoptile length) in the cross Cranbrook (dwarf) / Halberd (tall). The dwarfing effect underlying the QTL is caused by the Rht-B1b allele \{0379\}.
Rht-B1c $\{116\} . S e m i-d o m i n a n t ~\{1040\}$. [Rht3\{565\},Sd3\{565\}]. i: Tom Thumb/7* Kharkov// Lancer\{1040\}; See\{408\}. v: Minister Dwarf\{404\}; Selection D6899 (Tom Thumb-Sonora 64/Tacuari)\{357\}; Tom Thumb 4405$\}$; Tom Pouce Blanc $\{407,1634\}$;

Tom Pouce Barba Rouge\{407,1634\}; Topo; Tordo. ma: Xmwg634-4B (distal) - 30.6 cM - Rht-B1c - 11.9 cM - Xpsr144-4B (proximal)\{117\}.
Rht-B1d\{116\}.Semi-dominant \{1599,116\}. [Rht1S\{1599\}]. v: Saitama $27\{1599\} ;$ Occurs frequently in Italian and Yugoslavian wheats\{1599\}; Argelato, Centauro, Chiarano, Etruria, Farnesse, Gallo, Gemini, Lario, Pandas, Produttore, Orlandi, Orso, Salvia, Sprint, Strampelli.
Rht-B1e\{116\}. [RhtKrasnodari1\{452\},Rht1(B-dw)\{1600\}]. v: Krasnodari 1 (a spontaneous GA-insensitive offtype of Bezostaya 1)\{1600\}.
Rht-B1f\{116\}.Semi-dominant \{116\}. [RhtT. aethiopicum\{116\}]. tv: T. aethiopicum accessions W6824D\{116\}; W6807C \{116\}.
Rht-B1g\{0019\}. v: Highbury mutants M3 103-3 and M3 103-9\{0019\}; Allele Rht-B1g is a fast neutron-induced mutation of Rht-B1b and produces a tall gibberellin responsive phenotype\{0019\}.
Rht-D1\{116\}. 4D\{411,583,1544\}.4DS\{980,1266,116\}. i: Common wheat and durum NIL pairs are listed in \{02102\}. ma: Xpsr1871(Pki)-4D-4cM - Rht-D1-6 cM -
Xubc821(PhyA)-4D\{410\}; Rht-D1-2.8cM - Xglk578-4D\{9966\}; Xpsr1871-1cM - Rht-D1b - 4cM - Xpsr821(PhyA) 0019$\}$.

Rht-D1a\{116\}. v: Tall wheats\{116\}; e.g. Chinese Spring.
Rht-D1b\{116\}.Partially recessive \{024\}, recessive \{357\}, semi-dominant \{408\}. [Rht2\{015\},Sd2\{015\}]. 4D\{411\}.4DS\{980\}. i: See\{408,414,02102\}. v: Combe\{567\}; Era\{407\}; Gaines Sib 2\{015\}; Jaral\{407\}; Kite\{1174\}; Maris Hobbit \{411\}; Pitic 62 \{567\}; Songlen\{243\}; Oleson Rht-B1b\{357\}; Norin 10-Brevor 14 RhtB1b\{015\}; Selection D6301 Rht-B1b\{357\}; List in\{1386\}.
The development of allele-specific primers for Rht-D1b was reported in $\{0378\}$.
Rht-D1c\{116\}.Dominant \{114\}. [Rht10\{1266\}]. v: Ai-bian\{1544,1266\}. ma: Xpsr9214D (4DS) - 0.8 cM - Rht-D1c - 28 cM - Xgwm165-4D (4DL)\{117\}.
Rht-D1d\{116\}.Semi-dominant \{116\}. [RhtAi-bian 1a\{115\}]. v: Ai-bian 1a (spontaneous mutant of Ai-bian 1) $\{115\}$.
The line XN004, earlier considered to have Rht21\{0230\}, was shown to carry an allele at the Rht-D1 locus $\{0231\}$.
Various common wheat and durum N1Ls differing at the Rht-B1 and Rht-D1 loci are listed in $\{02102\}$. Genotype lists in $\{402,1382,1612,1613\}$.

39.2. Reduced Height : GA-sensitive

Borner et al. \{116\} found no evidence of orthologous GA-sensitive genes in rye, but reviewed evidence for orthologous GA-insensitive gene. The close linkage of Rht8 and Xgwm261-2D permitted the use of the microsatellite as a marker for the detection of allelic variants at the Rht 8 locus $\{9962\}$.
Rht4\{568\}. Recessive. v: Burt ert 937, CI 15076\{566,717\}.
Rht5\{717\}. v: Marfed ert 1, M1, CI 13988\{717,718,1593\}.
Rht6\{718\}. Recessive. v: Brevor\{569\}; Burt\{569,718\}. v2: Norin 10-Brevor, 14 Rht-B1b Rht-D1b\{569\}.
Rht7\{1602\}. 2A\{1602\}. v: Bersee Mutant A\{1602\}; Bersee Mutant C\{1602\}.
Rht8. 2D\{772,1601,1598\}.2DL. s: Cappelle-Desprez*/ Mara 2D\{1601\}. v: Novasadska Rana $1\{1604\} ;$ Sava\{1601,414\}. v2: Akakomugi $\operatorname{Rht} 9\{1191\}$; Mara $\operatorname{Rht} 9\{1191\}$. ma: Xgwm484-2D (proximal) - 19.9 cM - Rht8 - 0.6 cM - Xgwm261-2D (distal)\{727\}. The close linkage of Rht8 and Xgwm261-2D permitted the use of the microsatellite as a marker for the detection of allelic variants at the Rht8 locus\{9962\}.
Rht8a.Associated with a 165-bp fragment of WMS 261 \{9962\}. v: Autonomia\{9962\}; Bobwhite\{9962\}; Brevor\{9962\}; Chaimite\{9962\}; Ciano 67\{9962\}; Chris\{9962\};

Dugoklasa\{9964\}; Federation\{9962\}; Frontana\{9962\}; Glennson $81\{9962\}$; Jupateco $73\{9962\}$; Kenya \{9962\}; Klein $32\{9962\}$; Lerma Rojo\{9962\}; Lusitano\{9962\}; Maringa\{9962\}; Mentana\{9962\}; Nainari 60\{9962\}; Newthatch\{9962\}; Opata 85\{9962\}; Othello\{9962\}; Penjamo $62\{9962\}$; Quaderna\{9962\}; Rex\{9962\}; Riete\{9962\}; Saitama 27\{9962\}; Spica\{9962\}; Veery S\{9962\}; Victo\{9962\}; Hope\{0243\}; Marquis $\{0243\}$; Michigan Amber\{0243\}.
Rht8b.Associated with a 174-bp fragment of WMS 261 \{9962\}. s: Cappelle Desprez*/Mara 2D\{1601\}. v: Arthur\{0243\}; Balkan\{9962\}; Bunyip $\{9962\}$; Cappelle-Desprez\{9962\}; Carstens\{0243\}; Diakovchanka\{0243\}; Eureka\{9962\}; Festival \{9962\}; Fronteira\{9962\}; Fultz\{9962\}; Gabo\{9962\}; Heine VII\{9962\}; Inallettabile $95\{9962\}$; Jena\{9962\}; Klein Rendidor 9962$\}$; Leonardo 99962$\}$; Lutescens $17\{9962\}$; Mironovskaya 808\{9962\}; Norin 10\{9962\}; Norin 10/Brevior 14\{9962\}; Oasis \{0243\}; Odom\{0243\}; Podunavka\{9962\}; Purdue Abe\{0243\}; Record\{9962\}; Red Coat\{9962\}; Salzmunder Bartweizen 14/44\{0243\}; Soissons\{9962\}; Talent\{9962\}; Tevere\{9962\}; Timstein\{9962\}; Tp114/65\{0243\}; Wilhelmina\{9962\}; Wiskonsin 245 C/11226\{0243\}.
Rht8c.Associated with a 192 bp fragment of WMS 261 \{9962\}. v: Akakomugi\{1191\}; Alfa \{9962\}; Aquila 99962$\}$; Ardito $\{9962\}$; Argelato 9962$\}$; Avrora $\{9962\}$; Banija\{9964\}; Baranjka\{9964\}; Beauchamps \{9962\}; Bezostaya\{9962\}; Biserka\{9962\}; Campodoro\{9962\}; Centauro\{9962\}; Chikushi-Komugi (Norin 121)\{9962\}; Damiano 99962$\}$; Djerdanka 99964 \}; Dneprovskaya\{9962\}; Duga 99964$\}$; Etoile-dechoisy\{9962\}; Etruria\{9962\}; Fakuho-Komugi (Norin 124) \{9962\}; Farnese\{9962\}; Favorite\{9962\}; Fedorovka\{0243\}; Fiorello\{9962\}; Fortunato\{9962\}; Funo\{9962\}; Gala\{9962\}; Haya Komugi \{9962\}; Impeto\{9962\}; Irnerio \{9962\}; Jarka \{9964\}; Jugoslavia\{9962\}; Kavkas\{9962\}; Kaloyan\{0243\}; Khar'kovskaya $50\{0243\}$; Khar'kovskaya $93\{0243\}$; Khersonskaya $86\{0243\}$; Kolubara\{9964\}; Kosava\{9964\}; Libellula 9962$\}$; Lonja $\{9964$; Lovrin $32\{9962\}$; Macvanka-2 \{9964\}; Mara\{119,9962\}; Marzotto\{9962\}; Mv 03-89\{0243\}; Mv 06-88\{0243\}; Mv 17\{0243\}; Neretva\{9962\}; Nizija\{9962\}; Novasadska Rana 1 \{1604\}; N.S. Rana 1 \{9962\}; N.S. Rana $2\{9962\} ;$ N.S. 649\{9962\}; N.S. 3014\{9962\}; Obrii 0243$\}$; Odesskaya $51\{0243\}$; Odesskaya $117\{0243\}$; Odesskaya $132\{0243\}$; Odesskaya Krasnokolosaya 0243$\}$; Odesskaya Polukarlikovaya\{0243\}; Orlandi\{9962\}; Osjecanka\{9964\}; OSK 5 5/15\{9964\}; OSK 4 57/8\{9964\}; OSK 3 68/2; Partizanka\{9962\}; Partizanka Niska\{9962\}; Poljarka\{9964\}; Posavka 1 \{9964\}; Posavka 2\{9962\}; Pomoravka\{9962\}; Produttore $\{9962\}$; Radusa $\{9962\}$; Roazon\{0243\}; Salto\{9962\}; Sanja\{9962\}; San Pastore\{9962\}; Sava\{1601,414,9962\}; Siete Cerros\{9962\}; Sinvalocho\{9962\}; Simvol Odesskii 0243 ; Sivka\{0243\}; Strumok\{0243\}; Skopjanka\{9962\}; Skorospelka 3B\{9962\}; Slavonija\{9964\}; Somorka\{9964\}; Sremica\{9964\}; Superzlatna\{9962\}; Svezda\{9962\}; Tira 0243$\}$; Tisa\{9964\}; Transilvania $\{9962\}$; Ukrainka Odesskaya\{0243\}; Una\{9962\}; Villa Glori\{9962\}; Vympel\{0243\}; Yubileinaya $75\{0243\}$; Zagrebcanka\{9964\}; Zelengora\{9964\}; ZG 6103/84\{9964\}; ZG 7865/83\{9964\}; Zitarka\{9964\}; Zitnica \{9962\}; Zlatna Dolina\{9964\}; Zlatoklasa\{9964\}; Zolotava\{0243\}.
Although CS carries a 192 bp fragment, sequencing showed it was a different allele than other genotypes with Rht8c \{02103\}.
Rht8d.Associated with a 201-bp fragment of WMS 261 \{9962\}. v: Pliska\{9962\}; Courtot $\{9962\}$.
Rht8e.Associated with a 201-bp fragment of WMS 261 \{9962\}. v: Chino\{9962\}; Klein Esterello \{9962\}; Klein 157\{9962\}.
Rht8f.Associated with a 215-bp fragment of WMS 261 \{9962\}. v: Klein $49\{9962\}$.
Rht8g.Associated with a 196-bp fragment of WMS 261 [\{0243\}]. v: Mirleben\{0243\}.

22
 Morphological And $\mathbf{P}_{\text {hysiological }}$ Traits

Rht8h.Associated with a 206-bp fragment of WMS 261 [\{0243\}]. v: Weihenstephan M1 0243$\}$.
Rht9. 7BS\{772,1601\}. s: Cappelle-Desprez*/Mara 5BS-7BS\{1601\}. v: Acciao\{718\}; Forlani 7718$\}$; Akakomugi Rht8\{1601\}; Mara Rht8\{1601\}.
Rht11\{718\}. v: Karlik 1\{718\}.
$\boldsymbol{R h t 1 2}\{718\}$. Dominant. 5A\{1445,1606\}. v: Karcagi 522M7K\{721\}. ma: Rht12 is located distally on 5AL cosegregating with B1 and closely linked to b-Amy-A1\{1606\}; Xgwm291-5A - 5.4cM - Rht12\{726\}.

Rht12 delayed ear emergence by 6 days\{1606\}. Rht12 delayed ear emergence by 6 days \{1606\}.
Rht13\{718\}. v: Magnif 41M1 CI 17689\{718\}.
Rht14\{718\}. v: Cp B 132 \{123\} = Castelporziano PI 347331\{718\}.
Rht15\{718\}. tv: Durox\{718\}.
Rht16\{718\}. v: Edmore M1\{718\}.
Rht17\{718\}. v: Chris Mutant CI 17241\{1129\}.
Rht18\{718\}. tv: Icaro\{718\}.
Rht19\{718\}. tv: Vic M1\{718\}.
Rht20\{718\}. v: Burt M860\{718\}.
$\boldsymbol{R h} \boldsymbol{t} \mathbf{1}\{0230\}$. The existence of this gene was not confirmed $\{0231\}$.

39.3. Reduced Height : QTL

QHt.fra-1A\{9957\}. ma: Linkage with Xfba393-1A.
QHt.fra-1B\{9957\}. ma: Linkage with Xcdo1188-1B.2.
QHt.fra-4B\{9957\}. ma: Linkage with Xglk556-4B.
QHt.fra-7A\{9957\}. ma: Linkage with Xglk478-7A.
QHt.fra-7B\{9957\}. ma: Linkage with XksuD2-7B.
QHt.ocs-4A. 1 \{0047\}. 4AL\{0047\}. v: CS/CS(Kanto107 4A) mapping population $\{0047\}$.
ma: Associated with Xpsr119-4A and $W x-B 1\{0047\}$.
QHt.ocs-4A.2\{0047\}. 4AS\{0047\}. v: CS/CS(Kanto107 4A) mapping population\{0047\}.
ma: Associated with $X b c d 1738-4 A$ and $H d\{0047\}$.
QHt.ocs-5A.1 $\{0068\}$. [Qt.ocs-5A.1\{0068\}]. 5AL\{0068\}. v: CS(T. spelta 5A)/CS(CappelleDesprez 5A) RI mapping population\{9903\}. ma: Associated with the intervalXcdo1088-5A-Xbcd9-5A\{0068\}.
This QTL coincided with a QTL for culm length, QCl.ocs-5A. 1 \{0068\}.
QHt.ipk-4A\{0255\}. 4AL $\{0255\}$. v: Opata/W-7984 (ITMI) RI mapping population $\{0255\}$; the height is contributed by Opata 0255$\}$. ma: Associated with Xmwg549-4A, Xabg390-4A and Xbcd1670-4A\{0255\}.
QHt.ipk-4A coincided with QTLs for ear length (QEl.ipk-4A), grain number (QGnu.ipk-4A) and grain weight per ear (QGwe.ipk-4A) \{0255\}.
QHt.ipk-6A\{0255\}. 6A\{0255\}. v: Opata/W-7984 (ITMI) RI mapping population $\{0255\}$; The height is contributed by W-7984\{0255\}. ma: Associated with Xcdo29-6A and Xfba2346A\{0255\}.
QHt.ipk-6A coincided with QTLs for peduncle length (QPdl.ipk-6A) and ear length (QEl.ipk6A) $\{0255\}$.
Two QTLs for plant height were assigned to chromosome 3A in RSLs from Cheyenne ${ }^{*}$ 7/ Wichita 3A substitution line $\{0025\}$.
Seven QTLs on chromosomes 1A, 1D, 2B, 2D and 4B affected plant height among RILs of CS/T. spelta duhamelianum. Effects linked with the CS alleles of Xbcd1160-1A, Xksu127-1D and $X k s u F 11-2 D$ increased height whereas those CS alleles associated with Xpsr131-2B, Xpsr125-2B, Xpsr934-2D and Xcs22.2-4B reduced it \{0196\}.

40.Herbicide Response

40.1. Difenzoquat insensitivity

Dfq1\{1396\}. Insensitive. 2B\{1396\}.2BL\{789\}. v: CS\{1396\}.
dfq1. Sensitive. s: CS**/Ciano 67 2B\{1396\}; CS**/Marquis 2B\{789\}; CS ${ }^{*} /$ Sicco 2B\{1396\}. v: Ciano $67\{1396\}$; Sicco\{1396\}.
Busch et al. $\{153\}$ reported a single dominant gene for tolerance of Era and Marshall compared with the susceptibility of Eureka and Waldron, but its relationship to Dfq1 is unknown.

40.2. 2,4-D tolerance

Randhawa et al. \{1190\} reported a single dominant gene in each of WL711, CPAN1874 and CPAN1922 controlling tolerance. HD2009 and PBW94 were described as susceptible.

40.3. Chlortoluron Insensitivity

Su1\{1402\}. Insensitive. 6B \{1402\}.6BS\{799\}. v: Cappelle-Desprez\{1402\}. tv: B-35\{735\}.
su1. Sensitive. v: Chinese Spring\{1402\}; Poros\{1402\}. tv: B-7\{735\}. ma: Xpsr312-6B5.3cM - Su1-6.8cM - Xpsr477(Pgk2)-6B\{736\}. ma,tv: Nor2 (6BS) - 2.7cM - Su1\{1401\}; Su1-5.2cM - Xpsr371-6B (6BL)\{735\}.
Su1 also controls insensitivity to metoxuron \{1402\}. A single dominant gene for tolerance to isoproturon was found in tetraploid wheats derived from a tolerant T. monococcum source $\{1044\}$. This gene is presumably different from Su1.

41.Hybrid Weakness

41.1. Hybrid necrosis

[Progressive lethal necrosis \{155\}; Firing \{971\}].
Complementary dominant genes. Descriptive alleles w (weak), m (medium) and s (strong) were allocated by Hermsen \{532\}. Phenotype is affected by modifying genes (and/or genetic background) and environment \{566\}. According to Dhaliwal et al. \{257\} progressive necrosis is suppressed at 28C.
Ne1\{530\}. [Le\{155,550\},F\{971\},Le1\{1491\}]. 5B\{1491\}.5BL\{1636\}.
Ne1m\{530\}. i: S-615*11/Prelude\{1500\}. v: Carpo\{532\}; Eskisehir 220-39\{532\}; Garnet\{532\}; Klein Aniversario\{532\}; Koga\{532\}; Mus XII/80/22\{532\}; Prelude\{532,1491\}.
Ne1s\{530\}. v: Big Club\{155,532,550\}; C306\{1475\}; Felix\{531\}; Gaza 141 PI 220429 \{532\}; Luteseens 1163\{1264\}; Marquillo\{115,532,550\}; Ponca\{532\}; Spica\{939\}. tv: Gaza 1E PI 133460; Gaza PI 189262\{532\}; Iumillo\{532\}; Kubanka\{532\}; PI 94587\{155,532\}; Quanah\{532\}.
Ne1s is common in tetraploid wheats $\{1080\}$. Unknown Ne1 allele. tv: HW75 \{697\}; HW178 \{697\}. Chinese Spring carries the weakest allele $\{532\}$ and its effect can be observed in CS*7/Atlas 66 2B \{939\} relative to CS.

24 Morphological And Physiological Traits

Ne1w\{530\}. v: Bobin group 5332 :Kenya Farmer\{532\};The Bobin selection used in breeding Gabo \{532\}; and its sister selection, Timstein\{532,1556\}; was in fact Gular. Hence Gular, not Steinwedel, is the presumed source. The Sydney University acession Bobin W39 was the parent of Gabo and Timstein, whereas "true" Bobin carried the accession number W360. The particular accession tested by Hermsen is not clear. According to Metgzer\{1000\}; Steinwedel is a non-carrier ; Federation group $\{532\}$: Cadia\{532\}; Cleveland\{971\}; Minister group 5332 : ; Rieti group\{532\}: Mentana\{532\}; Mara\{532\}.
Ne2. [Le2\{155,550,1491\},F\{971\}]. 2B\{1491\}.2BS\{1085\}.
Ne2m\{530\}. v: Squarehead group $\{532\}$: European wheats $\{532\}$; Fronteira group $\{532\}$: Sonalika\{1475\}; South American wheats and derivatives, e.g. Atlas 40\{532\}: Wheats possessing Lr13\{939\}, e.g. Manitou\{939\}.
Ne2m?\{530\}. v: Barleta group\{532\}: South American wheats, e.g. Klein Titan\{532\}; La Prevision 25\{532\}; Lin Calel\{532\}.
Ne2ms\{530\}. v: Mediterranean group\{532\}: Dawson\{155,550\}; Fultz\{550\};
Fulcaster\{550\}; Fulhard\{550\}; Honor\{550\}; Jones Fife\{1491\}; Shepherd\{550,971\}; Trumbull\{155\}; Vermillion\{530\}; Wabash\{155\}. (Although placed in this group on basis of pedigree, the last three stocks, as well as Fultz selection of CI 19293, appear to have the stronger allele of the Crimean group $\{532\}$; Noe group $\{532\}$: Vilmorin 27\{532\}; Unknown Ne2 allele\{532\}; Harvest Queen\{532\}. tv: Acme\{532\}; Arnautka\{532\}; Carleton\{532\}; Langdon\{1498\}; Mindum\{532\}; Stewart\{532\}. However, Ne 2 was stated to be absent or rare in tetraploid wheats $\{1080\}$. The Chinese Spring 2BS telosome carries an Ne2 allele that is not present in Chinese Spring \{1085\}.
Ne2s\{530\}. i: S-615*11/Kharkov\{1500\}. v: Crimean group\{532\}: Blackhull\{550\}; Chiefkan\{550\}; Clarkan\{550\}; Kharkov\{1491\}; Michigan Amber\{532\}; Minhardi $\{155\}$; Red Chief\{550\}; Stepnaja 135\{1264\}; Turkey\{532\}.
Ne2w\{530\}. v: Vakka\{532\}; Varma\{532\}.
ne1 ne2. v: Chancellor\{531\}; Elgin\{1491\}; Gladden\{155\}; Leap\{155\}; Purkof\{155\}; Red
Bobs\{1491\}; Red Egyptian\{1491\}; Steinwedel\{1000\}; S-615 \{1491\}; Wichita\{531\}.
Genotype lists in
\{531,532,535,640,696,698,1093,1135,1264,1381,1473,1474,1475,1492,1496,1497,1502,150
3,1512,1505,1506,1507,1508,1509,1510,1630,1631,1632,1633,1637,1638,1639,0112\}.
Rye line 1R136-2 carries Ner1 \{1210\} that complements wheat gene $\operatorname{Ne} 2\{1289,1210\}$ and rye gene $\mathrm{Ne} 2\{1210\}$ to produce necrosis. Rye lines L155 and L256 carry $\mathrm{Ne} 2\{1210\}$ that complements Ne1 \{630,1210\} and Ne1 \{1210\}.
Ner1 11210$\}$. 5RL \{1211\}. al: S. cereale 1R136-2 \{1210\}.
Ner2\{1210\}. 7RL\{1211\}. al: S. cereale L155, L256\{1210\}.

41.2. Hybrid chlorosis type 1

Ch1 $\{535\}$. [m $\left.m^{a}\{1245\}\right]$. 2A\{538,939\}. i: Steinwedel ${ }^{*} 2 / K h a p l i\{939\} ;$ T. macha var. colchicum\{535\}. v: T. macha var. subletschumicum\{1245,1493\}. tv:
Khapli $\{1080,1549\}$; T. dicoccoides var. kotschyanum\{535\}; T. dicoccoides var. straussianum\{535\}.
36 group dicoccon wheats are listed in $\{697\}$.
Ch2\{535\}. [m $\left.m^{b}\{1245\}, N e 3\{1504\}\right]$. 3D\{1495,1504\}.3DL \{692,939\}. v: Chinese Spring\{535,1504\}; T. vavilovi.
Extremely widespread, very few wheats lack this gene.
Allelic variation at the Ch2 locus was suggested $\{537,1000\}$. Prelude, Reward and Red Bobs
were exceptional in producing severe symptoms and death at an early stage. Konosu 25 may carry a weak allele \{1000\}. Different alleles in C306 (strong) and Sonalika (medium) were suggested in $\{697\}$.
ch1 ch2. v: Albit\{1000,1509\}; Burt\{1000,1509\}; Chancellor\{1000\}; Garra\{1549\}; Kharkof\{535\}; Steinwedel\{1549\}. su: TAP 67 (= Pawnee 3Ag(3D))\{1644\}.

Lists appear in
\{535,697,1381,1473,1474,1475,1496,1497,1502,1503,1512,1505,1506,
1507,1508,1509,1510\}.
A gene, Chr1, in rye produces chlorosis symptoms in hybrids with wheats such as C306, HD2939 and NI5439 possessing Ch2 \{1472\}. Evidence for multiple alleles of Chr1 was also presented \{1472\}.
Chr1\{1472\}. dv: Cereal rye lines, EC179188 = WSP527A\{1472\}; EC143825 = WSP506A\{1472\}; EC338685 = Blanco\{1472\}; others $\{1472\}$.
chr1\{1472\}. dv: EC179178\{1472\}; EC179185 SAR/SWPY5\{1472\}.

41.3. Hybrid chlorosis (type 2) \{1511\}.

Cs1 11511$\}$. [Chl ${ }^{1}$]. 5A\{1498\}. v: T. dicoccum cv. Hokudai $\{1511\}$.
Occurs at high frequency in the T. paleocolchicum group of emmers.
Cs2\{1511\}. [Chl $\left.{ }^{2}\{1501\}\right] .4 G\{1498\}$. tv: Many accessions of T. timopheevi and T. araraticum\{637,1511\}.
Multiple allelism at the Cs2 locus is discussed in \{637\}.

42.Iron Deficiency

Fe1 $\{926\}$. 7DL \{927\}. v: Saratovskaya 29\{926\}.
Fe2\{926\}. 7BS\{927\}. v: CS\{927\}.

43.Lack of Ligules

The liguleless character is controlled by complementary recessive genes in hexaploid wheat $\{077,738,942\}$ and by a single recessive in tetraploid wheat $\{047,050,939\}$. One gene at the tetraploid level is allelic with one of those in the hexaploid \{939\}. Evidence for orthology of $\lg 1$ and $\lg 2$ with \lg of rice $\{170\}$, $\lg 1$ of maize $\{004\}$, li of barley $\{1155\}$ and $a l$ of rye was presented in $\{725\}$. al: Imperial rye chromosome 2 R restored the liguled condition to a liguleless CS derivative \{939\}.
$\lg 1\{047\} .2 B\{942\} . \quad$ v: Partial backcross derivative of CS $\{939\}$.
lg2. 2D\{942\}. v: Eligulate W1342 $\lg 1\{942\}$; Partial backcross derivative of CS\{939\}.
Because diploid wheats are liguled, polyploid wheats presumably carry a third recessive factor in chromosome 2A.

44.Leaf Erectness

QLer.ipk-2A\{0255\}. 2AS \{0255\}. v: Opata/W-7984 (ITMI) RI mapping population\{0255\}; The erect leaf phenotype was contributed by Opata\{0255\}. ma: Associated with Xbcd348$2 A\{0255\}$.
Mutants lacking ligules are known to have erect leaves. However, the QTL for leaf erectness reported here is not related to liguleless mutants $\{0255\}$.

45.Leaf Tip Necrosis

$\operatorname{Ltn}\{1361\}$. 7D $\{1361\}$. v: Wheats with Lr34/Yr18\{301,1361\}; See Lr34, Yr18.
QLtn.sfr-1B\{0050\}. 1BS\{0050\}. v: Forno/T. spelta var. Oberkulmer mapping population $\{0050\}$. ma: Associated with Xgwm18-1B and Xglk483-1B\{0050\}.
QLtn.sfr-3A\{0050\}. 3A\{0050\}. v: Forno/T. spelta var. Oberkulmer mapping population $\{0050\}$. ma: Associated with $X p s r 570-3 A$ and $X p s r 543-3 A\{0050\}$.
QLtn.sfr-4B. $1\{0050\}$. 4B\{0050\}. v: Forno/T. spelta var. Oberkulmer mapping population\{0050\}. ma: Associated with Xpsr921-4B and Xpsr593-4B\{0050\}.
QLtn.sfr-4B.2\{0050\}. 4B\{0050\}. v: Forno/T. spelta var. Oberkulmer mapping population\{0050\}. ma: Associated with Xpsr593-4B and Xpsr112-4B\{0050\}.
QLtn.sfr-4D\{0050\}. 4DL $\{0050\}$. v: Forno/T. spelta var. Oberkulmer mapping population\{0050\}. ma: Associated with Xpsr302-4D and Xpsr1101-4D\{0050\}.
QLtn.sfr-5A\{0050\}. 5A\{0050\}. v: Forno/T. spelta var. Oberkulmer mapping population\{0050\}. ma: Associated with Xpsr549-5A and Xglk163-5A\{0050\}.
QLtn.sfr-6A\{0050\}. 6A\{0050\}. v: Forno/T. spelta var. Oberkulmer mapping population $\{0050\}$. ma: Associated with $X p s r 563-6 A$ and $X p s r 966-6 A\{0050\}$.
QLtn.sfr-7B. $1\{0050\}$. 7B $\{0050\}$. v: Forno/T. spelta var. Oberkulmer mapping population\{0050\}. ma: Associated with Xpsr350 and Xbzh232(Tha)-7B\{0050\}.
QLtn.sfr-7B.2\{0050\}. 7B\{0050\}. v: Forno/T. spelta var. Oberkulmer mapping population $\{0050\}$. ma: Associated with Xglk750-7B and Xmwg710-7B\{0050\}.
QLtn.sfr-7D\{0050\}. 7DS $\{0050\}$. v: Forno/T. spelta var. Oberkulmer mapping population\{0050\}. ma: Associated with Xpsr160-7D and Xgwm44-7D\{0050\}.

46.Lodging

QLd.sfr-1B\{0052\}. 1BS\{0052\}. v: Forno/T. spelta var. Oberkulmer mapping population\{0052\}. ma: Associated with Xpsr949-1B and Xgwm18-1B\{0052\}. This QTL coincided with QTL for reduced height, increased culm stiffness and broader leaf width $\{0052\}$.
QLd.sfr-2A\{0052\}. 2AS\{0052\}. v: Forno/T. spelta var. Oberkulmer mapping population $\{0052\}$. ma: Associated with $X p s r 958-2 A$ and $X p s r 566-2 A\{0052\}$. This QTL coincided with QTL for reduced height, increased culm stiffness, broader leaf width, more erect growth habit, later ear emergence and increased culm thickness $\{0052\}$.
QLd.sfr-2D 00052$\}$. 2D $\{0052\}$. v: Forno/T. spelta var. Oberkulmer mapping population\{0052\}. ma: Associated with Xpsr933-2D and Xglk529-2D\{0052\}.
QLd.sfr-3A\{0052\}. 3AS\{0052\}. v: Forno/T. spelta var. Oberkulmer mapping population\{0052\}. ma: Associated with Xpsr598-3A and Xpsr570-3A\{0052\}. This QTL coincided with QTL for increased culm stiffness and reduced culm thickness \{0052\}.
QLd.sfr-4A\{0052\}. 4AS 00052$\}$. v: Forno/T. spelta var. Oberkulmer mapping population $\{0052\}$. ma: Associated with X gwm397-4A and Xglk315-4A\{0052\}. This QTL coincided with QTL for reduced height, increased culm stiffness and more erect growth habit $\{0052\}$.
QLd.sfr-5A\{0052\}. 5AL $\{0052\}$. v: Forno/T. spelta var. Oberkulmer mapping population\{0052\}. ma: Associated with Xpsr918-5A and Xpsr1201-5A\{0052\}. This QTL coincided with QTL for reduced height, increased culm stiffness, reduced leaf width, more erect growth habit, later ear emergence and increased culm thickness $\{0052\}$.
QLd.sfr-5B\{0052\}. 5BL 00052$\}$. v: Forno/T. spelta var. Oberkulmer mapping population\{0052\}. ma: Associated with $X p s r 370-5 B$ and $X p s r 580-5 B\{0052\}$.

This QTL coincided with QTL for increased culm stiffness, broader leaf width and more erect growth habit $\{0052\}$.
QLd.sfr-6B\{0052\}. 6BL\{0052\}. v: Forno/T. spelta var. Oberkulmer mapping population\{0052\}. ma: Associated with Xpsr964-6B and Xpsr142-6B\{0052\}.
QLd.sfr-7B\{0052\}. 7BL 00052$\}$. v: Forno/T. spelta var. Oberkulmer mapping population $\{0052\}$. ma: Associated with $X p s r 927-7 B$ and $X p s r 350-7 B\{0052\}$. This QTL coincided with QTL for reduced height and later ear emergence $\{0052\}$.

47.Male Sterility

47.1. Chromosomal

ms1. Recessive alleles for sterility 4B\{268\}.4BS \{064\}.
ms1a\{268\}. v: Briggle's Chancellor Derivative\{268\}; Pugsley's Male Sterile\{268\}.
$\boldsymbol{m s 1 b}\{268\}$. v: Probus mutant\{268\}.
$\boldsymbol{m s} 1 c\{064\}$. v: Cornerstone $\{064\}$.
$\boldsymbol{m s} 1 d\{0290\}$. v: Mutant FS2\{0290\}.
ms1e\{0290\}. v: Mutant FS3\{0290\}.
ms1f\{0290\}. v: Mutant FS24\{0290\}.
$\boldsymbol{m s 2}$ \{806\}. Dominant allele for sterility. [Ta1\{240\}]. 4DS\{806\}. v: Taigu = Line $223\{240,807,806\}$; ms2 confers sterility when present in octaploid triticale\{597\}.
$\boldsymbol{m s 3} 3872\}$. Dominant allele for sterility. 5AS \{872\}. i: Chris derivative\{872\}; KS87UP9\{219\}.
ma: Xwg341-5A-0.8cM - ms3.......cent\{0289\}; Xcdo-677-5A and Xbcd1130-5A also cosegregated with $X w g 341-5 A$ but were located in a different region in the physical map $\{0289\}$.
$\boldsymbol{m s} 4\{0293\}$. Dominant allele for sterility, distinguished from $m s 2$ on the basis of different degrees of recombination with the 4D centromere. 4DS\{0293\}. v: Konzak's male sterile.
$\boldsymbol{m s} 5\{0290\}$. $3 \mathrm{~A}\{0290\}$. v: Mutant FS20\{0290\}.
47.2. Sterility in hybrids with wheat

Shw\{0331\}. [1HL 00331$\}]$. ad: Additions of 1H and 1HL to wheat and certain translocation lines \{0331\}. ma: Located in a 16.4 cM interval flanked by $\mathrm{Xmwg} 800-1 \mathrm{H}$ and Xmwg 943 $1 H$. A possible relationship with Ncc genes is discussed $\{0331\}$.

48.Manganese Efficiency

QTL: Variation associated with Xcdo583-4B explained 42% of the variation for Mn efficiency in the durum cross Stojocri 2 (Mn efficient)/Hazar (MN inefficient) \{0320\}.

49.Megasporogenesis

49.1. Control of megasporogenesis

Msg\{625\}. 7AS \{625\}. tv: Langdon\{625\}.

50.Meiotic Characters

50.1. Low-temperature pairing

$\operatorname{ltp}\{527\}$. v: Chinese Spring\{527\}.
Expressed in the absence of chromosomes 5 D at $12^{\circ} \mathrm{C}-15^{\circ} \mathrm{C}$, but not at $20^{\circ} \mathrm{C}$. A contrasting allele, $L t p$, for normal pairing at the lower temperature range was demonstrated in T. dicoccum.

50.2. Pairing homoeologous

Ph1 $\{1537\}$. 5BL \{1301\}. ma: PCR-based assays for presence and absence of Ph1 have been described\{0214,0217,9965,0359\}; The Ph1 factor(s) was restricted to a region flanked by Xrgc846-5B and Xpsr150-5B\{0219\}; Ph1 was physically mapped in 5BL to fraction length 0.55 , bracketed by deletions 5BL-1 and ph1b\{446\}.
ph1a.- Not applicable - see ph2b \{1303\}.
ph1b $\{1301\}$. v: Sears' high pairing mutant\{1301\}. ma: A PCR-based detection system for ph1b ph1b individuals is described in $\{9965\}$.
ph1c\{593\}. tv: Cappelli ph1 mutant $\{449,593\}$; This mutant is deficient for a terminal portion of chromosome 5BL \{449\}. ma: Mutant lines with ph1b and ph1c carry deletions of the chromosome segment possessing Ph1 in the respective parent lines $\{593,447\}$.
Several ph1 mutants are described in $\{0219\}$.
Ph2\{1302\}. 3DS 1302$\}$.
ph2a\{1302\}. v: Sears' intermediate pairing mutant $\{1301,1302\}$.
ph2b\{1304,1303\}. [ph1a\{1537\}]. v: Chinese Spring mutant 10/13\{1537\}.

50.3. Inhibitor of pairing homoeologous

Ph1 ${ }^{I}$. al: Aegilops speltoides $\{1218,439\}$.

51.Nitrate Reductase Activity

Nra\{424\}. v: UC44-111\{424\}.
nra\{424\}. v: Anza\{424\}.

52.Nuclear-Cytoplasmic Compatability Enhancers

$\boldsymbol{s c s}\{869\}$. Derived from T. timopheevii $\{869\}$. 1AL $\{870,027\}$. v: T. timopheevii $\{869\}$. ma: A number of completely linked RAPD makers were identified $\{044\}$.
Asakura et al. $\{044\}$ used the symbol Ncc as a synonymn for scs pointing out that the effects of the gene are not limited to a single species.

53.Nucleolus Organizer Regions

53.1. 18S-5.8S-26S rRNA genes

NORs have been observed as secondary constrictions associated with nucleoli on satellited chromosomes \{e.g., 221\}, and by in situ hybridization to chromosome spreads $\{039,294,1014\}$ of $18 S-5.8 S-26$ S ribosomal-DNA probes $\{038,433\}$. Allelic variation in gene number has been demonstrated at all wheat Nor sites and at Nor-R1 by filter \{367\} and in situ hybridization $\{1012\}$. Allelic variants of the Nor loci are detected by hybridization of
rDNA probes to restriction endonuclease-treated DNA on Southern blots \{037,288,917,1399\}. Alleles Nor-B2a to Nor-B2f were identified using Taq1 digests of genomic DNAs hybridized to derivatives of the plasmid $\mathrm{pTa} 250\{433\}$ containing spacer-DNA fragments pTa 250.4 $\{367,917\}$ and pTa 250.15 \{288\}.
Other variants may have been isolated \{1399\} using BamH1/EcoR1 double digests and pTa 71 \{433\}. The variants may or may not be equivalent to those described below.
Nor1a and Nor2a. v: Maris Huntsman\{1399\}.
Nor1b and Nor2b. v: Bezostaya 1 \{1399\}.
Nor1c and Nor2c. v: Cappelle-Desprez, Maris Ranger\{1399\}.
Nor-A1. 1AS\{221,367,835,1012\}. v: T. spelta\{221,367,835,1012\}. dv: T. monoсоссит $\{658\}$.
Nor-B1. [Nor1\{1120\}]. 1B\{037,288\}.1BS\{221,367,835,1041\}. v: CS\{288\}.
Deletion mapping divided the Nor-B1 in a proximal subregion Nor-B1p (short repeat) and a distal subregion Nor-B1d (long repeat) \{0275\}
Nor-B1a\{918\}. v: Cheyenne, Chinese Spring, Hope, Kite, Oxley, Teal, Timstein\{037,288\}; Vasco, 8 others\{288\}.
Nor-B1a-\{918\}. v: A derivative allele of Nor-B1a with a significantly reduced amount of spacer. Condor 64-1 \{918\}; Sonora 64-1 \{918\}.
Nor-B1b. v: Olympic, Robin, Shortim\{917\}.
Nor-B1c\{918\}. v: Banks\{917\}; Corella\{917\}; Warigal\{917\}; 5 others\{917\}.
Nor-B1c-\{918\}. v: Rosella\{918\}.
Nor-B1d\{918\}. v: Maris Huntsman\{918\}.
Nor-Agí1 $\left.{ }^{\boldsymbol{i}} 374\right\}$. $1 \mathrm{Ag}^{\mathrm{i}}\{374\}$. ad: Vilmorin27/Ag. intermedium $\{374\}$.
Nor-H1. [Nor-I1\{794\}]. 1HS\{794\}. dv: Sultan barley\{794\}.
Nor-R1. 1RS\{039\}. ad: CS/Imperial\{039\}.
Nor-S1. 1SS\{294\}. al: Ae. speltoides\{294\}.
Nor-U1. 1U\{906\}. su: CS/Ae. umbellulata\{906\}.
Nor-V1\{241\}. 1V\{241\}. ad: CS/D. villosum\{241\}.
Nor-B2. [Nor2\{1120\}]. 6BS\{1041,221,366,835\}. v: CS.
Nor-B2a\{918\}. 6B\{288\}. v: CS\{037,917\}.
Nor-B2a-\{918\}. v: Blueboy\{918\}; Sonora 64-1\{918\}.
Nor-B2b. T6B\{288\}. v: Banks, Oxley, Shortim, Timstein\{037\}; 12 others $\{917\}$.
Nor-B2c. v: Corella, Robin, Teal, 1 other\{917\}.
Nor-B2d\{918\}. H6B\{288\}. v: Hope\{037\}; Olympic\{917\}; Warigal\{917\}.
Nor-B2d-\{918\}. v: Harrier\{918\}; Kite\{917,918\}.
Nor-B2e. v: Vasco\{917\}.
Nor-B2f. Ch6B\{288\}. v: Cheyenne\{037,917\}.
Nor-B2g\{918\}. v: Falcon; Gluclub; La Prevision\{918\}.
Nor-B2h\{918\}. v: Yaktana\{918\}.
Nor-B2i\{918\}. v: Maris Huntsman; Thatcher $\{918\}$.
Nor-E2. 6ES\{294\}. ad: CS/E. elongata\{294\}.
Nor-G2. 6G \{578\}. tv: T. timopheevii IPSR (PBI) No. 1\{294\}.
Nor-H2. [Rnr1\{1248\}]. 6H\{1070,039,1248\}.6HS\{794\}. al: Clipper barley\{039\}; Sultan barley\{794\}.
Nor-S2. 6SS\{294\}. al: Ae. speltoides\{294\}.
Nor-A3. 5AS $\{1014,658\}$. dv: T. monococcum, T. urartu IPSR (PBI) Acc. A.
Nor-D3. 5DS\{221,835\}. v: CS; most wheats $\{037,288,917\}$.
Nor- $\boldsymbol{A g}^{i} 3$. $5 \mathrm{Ag}^{\mathrm{i}}\{374\}$. ad: CS/Ag. intermedium $\{374\}$.
Nor-E3. 5ES\{294\}. ad: CS/E. elongata\{294\}.
Nor-H3. [Rnr2\{1248\}]. 5H\{1070,039,1248\}.5HS\{794\}. al: Clipper barley\{039\}; Sultan barley\{794\}.

Nor-U3. $5 \mathrm{U}\{906\}$. ad,su: CS/Ae umbellulata\{906\}.
Nor-D4\{1042\}. 7DL\{1042\}. v: CS\{1042\}. dv: Ae squarrosa\{1042\}.
Nor-H4. [Nor-I4\{794\}]. 7HS\{794,793\}. al: Sultan barley\{794\}.
Nor-H5. [Nor-I5\{794\}]. 2HS\{794,793\}. al: Sultan barley\{794\}.
Nor-B6\{601\}. 1BL\{601\}. v: CS; Cheyenne, Wichita\{601\}. tv: Langdon\{601\}.
Nor-A7\{601\}. 5AL\{601\}. v: CS; Cheyenne, Wichita\{601\}. tv: Langdon\{601\}.
Nor-D8\{601\}. 3DS 601$\}$. v: Witchita\{601\}.
Nor-A9\{00120\}. [Nor-A1 \{221,367,835,1012\}]. 1AS\{282,276\}. v: T. spelta $221,367,835,1012\}$.
Nor-A10\{00120\}. [Nor-A3\{1014,658\}]. 5AS 282,276$\}$. dv: T. monococcum $\{282,276\} ;$ T. urartu IPSR (PBI) Acc. A.

More detailed listings for allelic variation at Nor-B1 and Nor-B2 are given in $\{917,918\}$. Two sites designated temporarily as Nor-Ax and Nor-Ay were identified in T. monococcum ssp. boeoticum, but were absent in ssp. urartu.

54.Osmoregulation

Osmoregulation is a specific form of solute accumulation regulating turgor pressure and hydration during periods of stress with positive effects on growth. Wheat lines selected for higher osmoregulation in the greenhouse have greater growth and seed yields under water limited conditions in the field.
Or 1030$\}$. Low osmoregulation. s: CS \{Red Egyptian 7A\}. v: Cappelle Desprez; Condor ${ }^{*} 4 / 3$ Ag $14\{1030\}$; Red Egyptian. ma: Or (proximal in 7AS) - 13 cM - Xpsr119$7 A\{1031\}$.
or $\{1030\}$. High osmoregulation. 7A\{1030\}.7AS \{1031\}. v: CS, Condor, Songlen, Takari\{1030\}.

55.Pollen Killer

Ki\{1306\}. Killing allele is dominant. 6BL\{1306\}. v: Chinese Spring\{1306\}; Mentana\{929\}.
ki. v: Probably the majority of wheats including Timstein, Gabo and Yalta\{1306\}.
Modifiers also appear to be involved as Luig \{840, and unpublished\} found variation among kiki parents. Some F2 and F3 Sr11sr11 plants from Yalta/Chinese Spring crosses segregated with less than 50% Sr11- phenotypes among the progeny indicating that killing extended to eggs as well as pollen. See also, Gametocidal Activity.

56.Polyphenol Oxidase (PPO) Activity

3,4 dihydroxyphenylalanine (L-DOPA) was used as a substrate in a non-destructive test of polyphenol oxidase activity in seeds. Chromosome 2D was shown to carry PPO gene(s) based on Langdon/Chinese Spring (2D) substitution lines and nullisomic-tetrasomic analysis \{0342\}.
QTL: A QTL on 2D, associated with Xfba314-2D was identified in an M6 / Opata 85 population using the L-DOPA assay. The high PPO activity was contributed by M6 \{0344\}. Markers significantly associated with PPO activity were also detected on chromosomes 2A, 2B, 3B, 3D and 6B in the population NY18 / Clark's Cream $\{0344\}$.

57.Red Grain Colour

Red colour is dominant to white. At each locus, the white allele is assigned a and the red allele, b. White-grained T. aestivum and amber-grained T. durum wheats carry recessive a alleles at each locus. White-grained CS*7/Kenya Farmer and CS*6/Timstein are considered near-isogenic to CS with R-D1b.
R-A1\{548\}. [R2]. 3AL 957,1003$\}$. i: Novosibirskaya $67^{*} 9 /$ Solo 730$\}$. ma: (Proximal) Xpsr483(Cxp1)-3A - 28cM - R-A1 - Xpsr904-3A\{370\} (distal).
R-A1b. [R2]. i: Novosibirskaya $67^{*} 9 /$ Solo\{730\}. v: Baron\{370\}; Diamant 2\{014\};
Hustler\{370\}; Norin 10- Brevor, 14\{017\}; Maris Widgeon\{370\}; Mercia; \{370\}; Motto\{370\}; Red Bobs \{1003\}; Sapphire\{370\}; Slejpner\{370\}; Talent\{370\}; Wembley\{370\}.
$\boldsymbol{R}-\mathbf{B 1}\{548\}$. [R3]. 3BL $\{1003,370\}$. i: Novosibirskaya $67^{*} 9 / k-28536\{730\}$. ma: Xbcd131-3B-5cM - R-B1 - 5cM - Xabc174-3B\{410\}.
R-B1b. [R3]. i: Novosibirskaya $67^{*} 9 / k-28536\{730\}$. v: Canon\{370\}; Dollar\{370\}; Grana\{370\}; Supreme\{370\}.
R-D1\{549\}. [R1]. 3DL\{1291,1293\}. i: Novosibirskaya 67*9/CS\{730\}. ma: Xbcd131-3D cosegregation with $R-D 1-15 c \mathrm{M}-\mathrm{Xabc} 174-3 D\{410\}$. v: CS.
R-D1b. [R1]. i: Novosibirskaya 67*9/CS\{730\}. v: Alexandria\{370\}; Apollo\{370\}; Axona\{370\}; CS; Pawnee\{549\}; Dwarf A\{370\}; Fortress\{370\}; Jerico\{370\}; Longbow\{370\}; Luna\{370\}; Mardler\{370\}; Maris Huntsman\{370\}; Minaret\{370\}; NFC 75/93/27A; Rapier\{370\}; Voyage\{370\}; Vuka\{370\}.
$\boldsymbol{R}-\mathrm{N} 1\{1018\}$. 3N\{1018\}. su: CS/Ae. uniaristata\{1018\}.
R-R1\{1011\}. 6RL\{1011\}. ad: Holdfast/King II\{1011\}.
\boldsymbol{R}-V1\{1518\}. 3VL\{1518\}. ad: Creso/D. villosum\{1518\}.
A 3 Ag chromosome from decaploid Ag . elongatum carries an allele for red grain colour which was transferred to Agent and the majority of Sears' 3D-3Ae\#1 translocations \{939\}. Other studies have identified wheats carrying either one or two, unidentified $R-1$ alleles: $\{056,437,549,631,654,659,1078,1148,1333,1349,1454,370\}$.
See also Variegated Red Grain Colour.
R-A1b R-B1b R-D1a. [R2,R3]. v: Red Chief\{548\}; Avalon\{370\}; Bersee; Cappelle Desprez; Feuvert; Mission; Parade; Rendezvous; Yuri\{370\}.
R-A1b R-B1a R-D1b . [R2,R1]. v: Broom\{370\}; Bezostaya 1\{370\}; Brigand\{370\}; Brock\{370\}; Kronjuwel\{370\}.
R-A1a R-B1b R-D1b. [R3,R1]. v: Kharkov\{1003\}; Fenman\{370\}; Norman\{370\}; Pastiche\{370\}; Riband\{370\}; Sperber\{370\}; Squadron\{370\}; Urban\{370\}.
R-A1b R-B1b R-D1b. [R1,R2,R3]. v: Bowie; Frondoso\{1148\}; Frontiera\{437\}; Hope\{204,206\}; Japanese Bearded\{1548\}; Kanred\{1078,1426\}; Lin Calel\{1078\}.

58.Response to Photoperiod

One-gene $\{1169\}$ and two-gene $\{638,1137,1170\}$ differences were reported in inheritance studies. In Chinese Spring/Hope substitution lines for chromosomes 1A, 4B and 6B greater sensitivity to short photoperiod was found, whereas substitutions of 3B and 7D were less sensitive $\{487\}$.
'a' alleles are dominant.
There is an orthologous gene series on the short arms of homoeologous group 2. The "a" alleles confer the insensitive response $\{0063\}$, the contrasting allele may be referred to as " b ".
Ppd-A1a\{0063\}. [Ppd3\{1141\}]. 2AL\{1268\}. v: C591\{0057\}.
Ppd-B1a\{0063\}. [Ppd2\{1566\}]. 2BS\{1566,1268,1269\}. s: Cappelle-Desprez*/CS 2B $\left.{ }^{*} 0058\right\}$. v: Chinese Spring\{1268\}; Spica\{557\}; Timstein\{1269\}. v2: Sharbati Sonora PpdA1a\{887\}. ma: Xpsr666-2B-1.2cM - Xpsr109-2B-4.4cM - Ppd-B1-4.8cM - Xpsr804-2B Cent\{0062\}.

Ppd-D1a\{0063\}. [Ppd1\{1566\}]. 2DS\{1268\}. s: Cappelle Desprez*/Ciano 2D\{1598\}; Cappelle-Desprez*/Mara 2D\{1598\}; CS*/Ciano 2D Ppd-B1a\{1268\}. v: Akakomugi\{1604\}; Bezostaya 1\{1604\}; Mara\{1604\}; Sava\{1604\}; Sonora 64\{1566\}. v2: Sharbati Sonora Ppd-D1a\{887\}.
Ppd-A1b Ppd-B1b Ppd-D1b. v: Cheyenne\{1141\}; Diamont 1\{887\}; Lancer\{638\}; Saratovskaya 29\{887\}; Warrier\{638\}. Two genes control photoperiod response in T. turgidum \{788\}. Gene Ppd-H2 on barley chromosome 2HS may be a member of the Ppd-1 orthologous series \{766\}.
QTL : A QTL was detected in chromosome 4BS in Courtot/CS $\{0132\}$.

59.Response to Salinity

59.1. $\mathrm{K}+/ \mathbf{N a}+$ discrimination

Variation in $\mathrm{K}+/ \mathrm{Na}+$ discrimination ratios correlate with salt tolerance, high ratios being indicative of higher tolerance.
Kna1 \{290\}. 4DL\{290\}.4BS.4BL-4DL \{283\}.4BS.4BL-4DL-4BL $\{849\}$. v: Hexaploid wheats $\{290\}$. tv,su: Langdon 4D(4B) \{283\}. tv,tr: Various lines\{290\}; Selection 3*54\{849\}. ma: Kna1 was completely linked with Xabc305-4B, Xabc305-4D, Xbcd402-4B, Xbcd402-4D, Xpsr375-4D, Xpsr567-4B, Xpsr567-4D, Xwg199-4B and Xwg199-4D in recombined T. turgidum 4B and T. aestivum 4D chromosomes \{283,849\}.
Lophopyrum elongatum chromosome arms 1ES, 7ES, and 7EL enhance $\mathrm{K}^{+} / \mathrm{Na}^{+}$selectivity in wheat under salt stress $\{0065\}$.

60.Response to Tissue Culture

Qtcr.ipk-2B.1 1084$\}$. [Tcr-B1 $\{084\}$]. ma: Weakly associated with Xpsr102-2B\{084\}.
Qtcr.ipk-2B.2\{084\}. [Tcr-B2\{084\}]. ma: Closely linked and distal to Ppd-B1\{084\}.
Qtcr:ipk-2B.3\{084\}. [Tcr-B3\{084\}]. ma: Linked withYr7/Sr9g\{084\}.
QGpp.kvl-2A\{0253\}. 2AL\{0253\}. v: Ciano/Walter DH mapping population. The green plant percentage was contributed by Ciano\{0253\}. ma: Associated with Xpsp3045-2A\{0253\}.
QGpp.kvl-2B.1 $\{0253\}$. 2BL $\{0253\}$. v: Ciano/Walter DH mapping population. The green plant percentage was contributed by Ciano\{0253\}. ma: Associated with Xgwm3882B\{0253\}.
QGpp.kvl-2B.2\{0253\}. 2BL\{0253\}. v: Ciano/Walter DH mapping population. The green plant percentage was contributed by Ciano\{0253\}. ma: Associated with AFLP markers $\{0253\}$.

61.Response to Vernalization

Winter cultivars carry recessive alleles at all Vrn loci. Differences among winter wheats with respect to vernalization requirements seem to be due to multiple recessive alleles $\{1173,0202\}$. Two genes may determine differences between winter wheats requiring 20 days and $60-65$ days of vernalization $\{461,1173,9902\}$.
New combinations of vrn alleles from Mironovskaya 808 with a high vernalization requirement and Bezostaya 1 with a lower requirement gave progenies with higher and lower vernalization requirements than the respective parents $\{9902\}$. The allelic variants were designated with subscripted letters $v r n 1^{B}, v r n 2^{B}, v r n 3^{B}$ and $v r n 1^{M}, v r n 2^{M}, v r n 3^{M}$. Spring and
intermediate genotypes carry dominant alleles leading to no or reduced vernalization response.
Vrn-1 $\{1398\}$. Orthologous series in long arms of chromosomes of homoeologous group 5. 'a' alleles are the dominant alleles for insensitivity or low vernalization response. Vrn-1 should be orthologous to Vrn-H1 \{Sh2/Sgh2\} of barley $\{726,419,767\}$ and Vrn-R1\{Sp1\} of rye $\{726,1142\}$ based on map locations using common RFLP
Vrn-A1a\{1398\}. [Vrn1\{1172\},Sk\{002\}]. 5AL\{775,883\}. i: Triple $\operatorname{Dirk}\{1171,1172\}$. s: Kharkov 22MC*/Rescue 5A\{358\}; Winalta* ${ }^{*} /$ /Rescue 5A $\{876\}$; Rescue*/Cadet 5A Vrn-D1a Vrn-B1a\{1221\}. v: Cadet\{1221\}; Conley\{1171\}; Diamant II\{885\}; Falcon\{1172\}; Koga II 1611$\}$; Kolben\{001,1171,1172\}; Konosu 25\{460\}; Marquis\{001\}; Reward\{1171\}; Saitama $27\{460\}$; Saratov 29\{883\}; Saratovskaya 29\{885\}; Saratovskaya $210\{883\}$; Shabati Sonora\{885\}; Thatcher\{1171\}; WW15\{1172\}. v2: Shortandinka Vrn-B1a\{885\}; Takari Vrn-B1a\{253\}; Hope Vrn-B4a\{1424\}. ma: Vrn-A1-7.5cM - Xwg644-5A\{726\}; Located mid 5A cosegregating with Xcdo504-5A, Xwg644-5A and Xpsr426-5A\{419\}; Vrn-A1 - 0.8cM - Xbcd450-5A/Xrz395-5A - 4.2cM - Xpsr426-5A\{9903\}.

Cultivars possessing Vrn-A1a are insensitive to vernalization. Vrn-A1a is epistatic to other genes. According to \{1221\}, Vrn-A1a is not always fully dominant and not always epistatic. Kuspira et al. $\{745\}$ attributed single gene variation in T. monococcum to the Vrn-A1a locus. Multiple recessive alleles were suggested $\{745\}$. Vrn- $A^{m} 1$ was mapped on the long arm of chromosome $5 \mathrm{~A}^{\mathrm{m}}$ closely linked to the same RFLP markers as Vrn-A1 \{279\}. Vrn-A ${ }^{m} 1$ was mapped to the Xcdo504-5A - Xpsr426-5A region $\{0312\}$. In the opinion of the curators this location may not be correct
Multiple alleles also were reported in \{9930\}, and the dominant allele of Novosibirskaya 67 and the weaker dominant allele of Pirotrix 28 were designated Vrn1a and Vrn1b, respectively.
Vrn-B1a\{1398\}. [Vrn4\{1173\},Vrn2\{1172\},Ss\{002\},Vrn2a = Vrn2\{921,920\},Vrn2b = Vrn2\{921,920\}]. 5B\{885\}.5D\{635\}.5BL\{885\}.5B\{921,920\}.5BL or 7BL $\{635,0282\}$. i: Ank-18\{921,920\}; Triple Dirk B\{1172\}. s: Diamant 1*8/Mironovskaya 5A\{920\}; Diamant 1*8/Skorospelka 35 5A\{920\}; Rescue ${ }^{*} /$ Cadet 5A Vrn-A1 Vrn-D1a\{885\}; Saratovskaya 29*8/Mironovskaya 808 5A\{920\}; Saratovskaya 29**/Odesskaya 515A\{920\}. v: Bersee $\{557\}$; Brown Schlanstedt $\{001,002,1171,1172\}$; Cadet\{1221\}; Festiguay $\{1172\}$; Magali; Mara\{1611\}; Milturum 321\{885,920\}; Milturum 885\{885,920\}; Noe\{002\}; Pyrothrix $28\{920\}$; Spica\{557\}; Ulyanovka 9\{920\}. v2: Borsum Vrn1-A1a\{001\}; Dala Vrn1-A1a\{001\}; Diamant 1 Vrn1\{001,920\}; Gabo Vrn4\{1172\}; Halland Vrn-A1a\{001\}; Harukikari Vrn-A1a\{883\}; Rubin Vrn-A1a\{001\}; Saratovskaya 29 Vrn-A1a\{920\}; Shortandinka Vrn-A1a\{1221\}; Triple Dirk Vrn-A1a\{1173\}. ma: A dCAPS marker derived from Xwg644-5B was 1.7cM from Vrn-B1\{10006\}.
When mapped as a QTL Vrn-B1 showed closest association with Xgwm408-5B \{10007\}.
Two variants of Vrn-B1a were distinguished in $\{920,921\}$. Carriers of an earlier designated Vrn2b (characterized by Diamant 1*8/Skorospelka 35 5A) showed accelerated flowering after 15 and 30 days of vernalization, whereas carriers of Vrn-2a, (characterized by Ank-18 and Saratovskaya 29*8/Mironovskaya 8085 A) did not respond to these periods of vernalization. This distinction was not made in the above list.
Vrn-D1a\{1398\}. [Vrn3\{1172\}]. 5DL\{775,883\}. i: Triple Dirk E\{1172\}. s: Rescue*/Cadet 5A Vrn-A1a\{1221\}. v: Chinese Spring\{1172\}; Loro\{1172\}; Norin 61\{460\}; Shinchunaga\{460\}; Shirasagi Komugi\{460\}; Ushio Komugi\{460\}. v2: Rescue VrnB1a\{1221\}.

Stock:Genotype:Vernalization Response
Triple Dirk, Kolben: Vrn-A1a Vrn-B1b Vrn-D1b:No
Triple Dirk B, Festiguay:Vrn-A1b Vrn-B1a Vrn-D1b:Yes

Gabo:Vrn-A1b Vrn-B1a Vrn-D1b:Yes
Triple Dirk E, Chinese Spring:Vrn-A1b Vrn-B1b Vrn-D1a:Yes
Vrn-2\{1398\}. Orthologous series in chromosomes of homoeologous group 4. Vrn-A ${ }^{m} 2$ was located in T. monococcum $\{279\}$ on chromosome $5 A^{m}$ on the $4 \mathrm{~A}^{\mathrm{m}}$ translocated region. Vrn$A^{m} 2$ was mapped to the distally located $X w g 114-5 A-X w e c 87-5 A$ region $\{0312\}$. VrnH2(sh/sgh1) occurs in barley chromosome 4H \{1455\} and is probably orthologous to Vrn$A^{m} 2$ based on comparative maps $\{279,767\}$.
Vrn-A2a\{279\}. Winter habit- dominant in diploid wheat. dv: G1777\{279\}; G3116\{279\}.
Vrn-A2b\{279\}. Spring habit. dv: DV92\{279\}.
Vrn-3\{1398\}. Orthologous series in chromosomes of homoeologous group 1 predicted from orthology with Vrn-H3(Sh3) in barley chromosome 1H \{1455,1316\}. Aneuploid and whole chromosome substitution experiments showed that all group 1 chromosomes of wheat carry genes affecting response to vernalization $\{773\}$.
Vrn-4\{279\}. To date, only Vrn-B4 has been detected.
Vrn-B4a\{279\}. The distal region of 7BS was translocated with a chromosome segment with homoeology to the distal region of 5AL. It is not known if Vrn-4 is located in the region homoeologous to 5L or 7S. [Vrn5\{771,769\},eHi\{771,769\}]. 7BS\{768,771\}. s: CS*/Hope 7B Vrn-D1a\{768\}. v: Hope Vrn-A1a\{1424\}.
Vrn4. 5D $\{10002\} .5 \mathrm{DL}\{10004\}$. i: Triple Dirk F. v2: Gabo Vrn-B1a\{1172\}; IL47/VrnA1a\{10005\}.
Eight land races with only Vrn4 were detected in $\{10003\}$; others combined Vrn4 with other Vrn genes. Stelmakh \{1424\} doubted the existance of Vrn4. References to additional studies are given in \{1424\}.
QTL: Analysis in Courtot/CS \{0132\}.

62.Restorers for Cytoplasmic Male Sterility

62.1. Restorers for T. timopheevi cytoplasm

$\boldsymbol{R f}\{823\}$. 1A\{1224,1619,873\}.1AS\{868\}. v: L22\{868\}; (T. timopheevi/Aegilops squarrosa)// 3*Dirk 1619$\}$. v2: T. timopheevi/3* Marquis Rf2\{823\}; R113 Rf4\{873\}. The second gene referred to as $R f 4\{1619\}$ in the last stock was located in chromosome 7D, but its relationship to $R f 2$ in $\{823\}$ is unknown.
$\boldsymbol{R f} 2\{823\}$. 7D $\{871\}$. v: T. timopheevi/3*Marquis $R f 1\{823\}$.
$\boldsymbol{R f}\{\{1453\}$. $1 \mathrm{~B}\{1453\} .1 \mathrm{BS}$. v: T. spelta var. duhamelianum $\{1453\}$. ma: Xcdo388-1B-1.2 cM - Xabc156-1B\{9934\}; RFLP markers Xcdo442-1B and Xbcd249-1B were found to be associated with $R f 3$ on 1BS $\{860\}$.
$\boldsymbol{R f 4}\{1619\}$. [Rf2\{1619\}]. 6B\{1619,873\}.1BS\{868\}. v: L3\{868\}; (T. timopheevi/Aegilops squarrosa) / 3*Canthatch $R f 5\{1619\} ;$ R113 Rf1\{873\}.
Rf5\{1619\}. [Rf3\{1619\}]. 6D\{1619\}. v: (T. timopheevi/Aegilops squarrosa)/ 3^{*} Canthatch $R f 4\{1619\}$.
$\boldsymbol{R} \boldsymbol{f}\{865,859\} .6 \mathrm{AS}[\mathrm{T} 6 \mathrm{AL} .6 \mathrm{AS}-6 \mathrm{U}]\{865\} .6 \mathrm{BS}$ [T6BL.6BS-6U]\{865\}. tr: Line 2114\{865\}; Lines 040-5; 061-1\{865\}; 061-4\{865\}.
Genes $R f c 3$ in chromosome 6RL and $R f c 4$ in chromosome 4RL were reported in $\{225\}$. Novel $R f$ genes were identified on 5AL linked to Xcdo786-5A and XksuH1-5A\{860\}.

62.2. Restorers for T. longissimum cytoplasm

Vi\{867\}. 1B \{870\}.1BS \{027\}. v: T. turgidum $\{867\}$.
Probably derived from a cv. Selkirk (T. aestivum) line with Ae. cylindrica cytoplasm \{867\}.

62.3. Restorers for photoperiod-sensitive Aegilops crassa cytoplasm

Morai \& Tsunewaki $\{1047\}$ described photoperiod sensitive CMS caused by Ae. crassa cytoplasm in wheat cv. Norin 26 . Almost complete sterility occurred when plants were grown in photoperiods of 15 h or longer.
Rfd1\{1047\}. 7BL\{1047\}. v: Chinese Spring\{1047\}.
A different system of restoration occurs in cv. Norin 61 where at least four chromosomes, 4A, 1D, 3D and 5D, appear to be involved \{1046\}. Several Japanese wheats carry a similar or equally effective gene combination $\{0335\}$.

63.Ribosomal RNA

The 5S-Rrna-1 loci were physically mapped in 1AS, 1BS, and 1DS and the 5S-Rrna-2 loci were physically mapped in 5AS, 5BS and 5DS of Chinese Spring using deletion lines \{1043\}. Table 1 in $\{276\}$ lists the chromosome or chromosome arm locations of rRNA loci in 12 Triticeae species.

63.1. 5S rRNA genes

Within the Triticeae there are basically two sets of 5S rRNA loci. One set, identified by repetitive units 320-468 bp in length, is located on group 1 chromosomes. The other set, identified by repetitive units 469-500 bp in length, is on group 5 chromosomes. Within species the repetitive units at a locus are extremely uniform in size and sequence. They remain stable in foreign genetic backgrounds.
5S-Rrna-A1. [5SDna-A1\{295\}]. 1AS\{295,658\}. v: CS\{1043\}.
5S-Rrna-B1. [5SDna-B1\{295\}]. 1BS 2039,295$\}$. dv: T. monococcum. ma: A PCR marker specific 5S-Rrna-B1 was developed\{9974\}.
5S-Rrna-D1. [5SDna-D1\{295\}]. 1D\{295,758\}.1DS\{295\}. v: CS\{295,758\}. dv: T. tauschii\{758\}. ma: A PCR marker specific for 5S-Rrna-D1 was developed in $\{9974\}$.
5S-Rrna-E1. [5SDna-E1\{960\}]. 1E\{1290\}. dv: L. elongatum.
5S-Rrna-R1. [5SDna-R1\{1206\}]. 1RS\{039,1206\}. al: S. cereale. ma: A PCR marker specific for 5S-Rrna-R1 was developed in \{9974\}.
5S-Rrna-Sc1. [5SDna-Sc1 $\{960\}$]. $1 S^{\mathrm{C}}\{1290\}$. al: Elymus ciliaris.
5S-Rrna-S 1. [5SDna-St $1\{960\}$]. 1S ${ }^{\mathrm{t}}\{1290\}$. al: E. trachycaulus.
5S-Rrna-Y1. [5SDna-Y1\{960\}]. $1^{\mathrm{Y}}\{1290\}$. al: E. ciliaris.
5S-Rrna-A2. [5SDna-A2\{295\}]. 5AS\{295,658\}. v: CS\{295\}. dv: T. топососсит\{295,658\}.
5S-Rrna-B2. [5SDna-B2\{295\}]. 5BS\{295\}. v: CS.
5S-Rrna-D2. [5SDna-D2\{295\}]. 5D\{295,758\}.5DS\{758\}. v: CS\{295,758\}. dv: T. tauschii\{758\}.
5S-Rrna-R2. [5SDna-R2\{1206\}]. 5RS\{1206\}. al: S. cereale.
5S-Rrna-H ${ }^{t}$. [5SDna- $\left.H^{t} 2\{960\}\right]$. $5 \mathrm{H}^{\mathrm{t}}\{1290\}$. al: E. trachycaulus.
5S-Rrna-U2. [5SDna-U2\{295\}]. 5U\{295\}. al: T. umbellulatum.
5S-Rrna-V2. [5SDna-V2\{960\}]. 5V\{1290\}. al: D. villosa.
5S-Rrna-H3. [5SDNA-H3\{793\}]. 2H\{710\}.2HL 7793$\}$. al: Betzes Barley; Sultan barley.
5S-Rrna-H4. [5SDNA-H4\{793\}]. 3HL\{793\}. al: Betzes barley; Sultan barley.
5S-Rrna-H5. [5SDNA-H5\{793\}]. 4HL\{793\}. al: Betzes barley; Sultan barley.
5S-Rrna-H6. [5SDNA-H6\{793\}]. 4HS\{793\}. al: Betzes barley; Sultan barley.

64.Seedling Leaf Chlorosis

sc $\{149\}$. 3BS\{149\}. s: CS ${ }^{*} /$ Hope3B $\{149\}$. v: Hartog\{149\}; Suneca\{149\}; wheats with Sr2\{149\}.
Leaf chlorosis is affected by temperature and light and is enhanced by infection with pathogens. sc is completely linked with Pbc (pseudo-black chaff) and Sr 2 (reaction to Puccinia graminis).

65.Segregation Distortion

QSd.ksu-1D $\{9931\}$. 1DL $\{9931\}$. dv: Ae. tauschii var. meyeri acc. TA1691/var. typica acc. TA1704\{9925\}. ma: Association with Xcmwg706-1D\{9931\}.
QSd.ksu-3D\{9931\}. 3DS\{9931\}. dv: Ae. tauschii var. meyeri acc. TA1691/var. typica acc TA1704\{9925\}. ma: Association with Xwg177-3D\{9931\}.
QSd.ksu-4D $\{9931\}$. 4DS $\{9931\}$. dv: Ae. tauschii var. meyeri acc. TA1691/var. typica acc. TA1704\{9925\}. ma: Association with XksuF8-4D\{9931\}.
QSd.ksu-5D.1\{9931\}. 5D\{9931\}. dv: Ae. tauschii var. meyeri acc. TA1691/var. typica acc. TA1704\{9925\}. ma: Association with Xcdo677-5D\{9931\}.
QSd.ksu-5D.2\{9931\}. 5DL\{9931\}. dv: Ae. tauschii var. meyeri acc. TA1691/var. typica acc. TA1704\{9925\}. ma: Association with Xglk614-5D (synonym 'Xtag614-5D')\{9931\}.
QSd.ksu-5D.3\{9931\}. 5DL\{9931\}. dv: Ae. tauschii var. meyeri acc. TA1691/var. typica acc. TA1704\{9925\}. ma: Association with Xwg1026-5D\{9931\}.
QSd.ksu-7D $\{9931\}$. 7DS $\{9931\}$. dv: Ae. tauschii var. meyeri acc. TA1691/var. typica acc. TA1704\{9925\}. ma: Association with Xglk439-7D (synonym 'Xtag439-7D')\{9931\}.

66.Sterol Esterification in Kernels - Synthesis of b-Sitosterol Esters

Two sterol-ester phenotypes, p-L (palmitate + linoleate) and L (linoleate) are inherited as alleles at a single locus.
Pln\{428\}. [P-L\{428\}]. 7DS\{1476\}. v: Aradi\{428\}; Aragon 03\{428\}.
pln\{428\}. [L\{428\}]. L\{428\}. v: Mara\{428\}; Pane 247\{428\}.

67.Temperature-Sensitive Winter Variegation

This phenotype involves reduced vigour and chlorotic patches on leaves of certain genotypes in Ae. umbellutata cytoplasm when grown at low temperatures $\{1596\}$.
Vgw. Variegation is dominant $\{1596\}$. [Vg\{1021\}]. 5BL $\{1021\}$. v: Bersee\{1596\}; CappelleDesprez\{1596\}; Hobbit Sib\{1596\}; Mara\{1596\}.
vgw\{1021\}. v: Besostaya I\{1596\}; CS\{1596\}; Poros\{1596\}; Sava\{1596\}; T. spelta\{1596\}.

68.Tenacious Glumes

Tg1\{1240\}. Derived from T. tauschii. Dominant. [Tg\{1240\}]. 2DS\{1240\}. v: Synthetic ABD wheats $\{652\}$.
$\boldsymbol{T g} 2\{0046\}$. Derived from T. dicoccoides 2BS\{0046\}. ma: $\operatorname{Tg} 2$ is associated with Xrsq805(Embp)-2B and Xpsr899-2B\{0046\}.

69.Tiller Inhibition

tin1 $\{1212\}$. Restricted tiller number is recessive\{1212\} [Tin\{1212\}]. 1AS $\{1212\}$. v: Israel Uniculm $494\{1212\}$.
tin2\{1212\}. Tiller-reducing affect of this allele was dominant \{9909\}. [Tin\{9909\}]. 2A\{9909\}. v: 88 F2 185\{9909\}.

70.Uniculm Stunt

Stunting is favoured by a combination of long days and low night temperatures \{581\}. Caused by duplicate recessive genes, us1 and us2, located in chromosomes 4A and 5B, respectively $\{200\}$.
Genotypes: Normal v: Us1 us2: Alfa \{581\}; Jaral \{581\}.
Normal v: us1 Us2: Mabruk $\{581\}$.
Stunted v: us1 us2: Line 492 \{581\}.

71.Variegated Red Grain Colour
 vg\{498\}. v: Line 10859\{498\}.

$v g v g$ genotypes in Line 10859 are variegated. The $\mathrm{Vg} / \mathrm{vg}$ locus was independent of the single red gene locus in Line 10859. In a cross to Selkirk ($R-A 1 b, R-B 1 b, R-D 1 b$) vgvg was expressed only in plants with one R gene\{498\}. Variegated red pericarp was also studied in crosses of cv. Supreme. In this case, two red colour genes were present $\{0136\}$.

72.Yield Components

72.1. Grain weight

72.1.1. 50-grain weight

QFgw.ocs-4A. 1 \{0047\}. 4A\{0047\}. v: CS/CS(Kanto107 4A) mapping population $\{0047\}$. ma: Associated with $X b c d 265-4 A$ and $X b c d 1738-4 A\{0047\}$.

72.1.2. 1000-grain weight

QTL: Two QTLs for 1,000-kernel weight were assigned to chromosome 3A in RSLs from Cheyenne ${ }^{*} 7 /$ Wichita 3A $\{0025\}$. QTLs for grain size were identified on chromosome arms 1DS, 2DL and 6BL in a RIL population from RS111/CS \{0236\}. Eight QTLs for 1,000kernel weight (54% of the variation) were mapped in Forno/ Oberkulmer spelt $\{0280\}$.
QGw1.ccsu-1A\{0165\}. 1AS\{0165\}. v: RS111/CS mapping population\{0165\}. ma: Associated with Xwmc333-1A\{0165\}.
QTgw.ipk-5A\{0255\}. 5AL $\{0255\}$. v: Opata/W-7984 (ITMI) RI mapping population\{0255\}; The higher yielding allele was contributed by $\mathrm{W}-7984\{0255\}$. ma: Associated with Xfba351-5A and Xcdo1312-5A\{0255\}.

72.2. Grain weight/ear

QGwe.ocs-4A. $1\{0047\}$. 4AS\{0047\}. v: CS/CS(Kanto107 4A) mapping population\{0047\}. ma: Associated with Xbcd1738-4A\{0047\}.
QGwe.ipk-2D\{0255\}. 2DS\{0255\}. v: Opata/W-7984 (ITMI) RI mapping population\{0255\}; Higher grain weight was contributed by Opata\{0255\}. ma: Associated with Xcdo1379-2D and Xbcd1970-2D\{0255\}.

QGwe.ipk-4A\{0255\}. 4AL\{0255\}. v: Opata/W-7984 (ITMI) RI mapping population\{0255\}; Higher grain weight was contributed by Opata\{0255\}. ma: Associated with Xmwg549-4A, Xabg390-4A and Xbcd1670-4A\{0255\}.
QGwe.ipk-4A coincided with QTLs for height (QHt.ipk-4A), spike length (XEl.ipk-4A) and grain number (QGnu.ipk-4A) \{0255\}.

72.3. Grain number per spike

QGnu.ipk-4A\{0255\}. 4AL\{0255\}. v: Opata/W-7984 (ITMI) RI mapping population\{0255\}; Higher grain number was contributed by Opata\{0255\}. ma: Associated with Xmwg549-4A, Xabg390-4A and Xbcd1670-4A\{0255\}.
QGnu.ipk-4A coincides with QTL for height (QHt.ipk-4A), spike length (XEl.ipk-4A) and grain weight per ear (QGwe.ipk-4A) \{0255\}.
QTL: Three QTLs for kernel number per spike were assigned to chromosome 3A in RSLs from Cheyenne ${ }^{*} 7 /$ Wichita $\{0025\}$.

72.4. Plant yield

QYld.ocs-4A.1 $\{0047\}$. 4AS\{0047\}. v: CS/CS(Kanto107 4A) mapping population $\{0047\}$. ma: Associated with Xbcd1738-4A\{0047\}.

72.5. Spikelet number/ear

QSpn.ocs-4A.1 $\{0047\}$. 4AS\{0047\}. v: CS/CS(Kanto107 4A) mapping population\{0047\}. ma: Associated with Xbcd1738-4A\{0047\}.

72.6. Spike number per square metre

QTL: A QTL for spike number per square metre was assigned to chromosome 3A in RSLs from Cheyenne ${ }^{*} 7 /$ Wichita 3A $\{0025\}$.

72.7. Spike length

QEl.ipk-1B\{0255\}. 1BL\{0255\}. v: Opata/W-7984 (ITMI) RI mapping population\{0255\}; Longer ear was contributed by Opata $\{0255\}$. ma: Associated with $X b c d 388-1 B$ and Xwg605-1B\{0255\}.
QEI.ipk-4A\{0255\}. 4AL\{0255\}. v: Opata/W-7984 (ITMI) RI mapping population\{0255\}; Longer ear was contributed by Opata $\{0255\}$. ma: Associated with Xmwg549-4A, Xabg390$4 A$ and $X b c d 1670-4 A\{0255\}$.
This QTL is likely to be a pleiotropic effect of the gene underlying the height QTL, QHt.ipk4A \{0255\}.
QEl.ipk-5A\{0255\}. 5AL $\{0255\}$. v: Opata/W-7984 (ITMI) RI mapping population $\{0255\}$; Longer ear was contributed by W-7984\{0255\}. ma: Associated with Xmwg522-5A\{0255\}. QTL: Five QTLs for spike length were detected in Courtot/Chinese Spring\{0114\} but only one on chromosome arm 5AL was consistent for at least two years.

72.8. Tiller number/plant

QTn.ocs-4A.1 $\{0047\}$. 4AS $\{0047\}$. v: CS/CS(Kanto107 4A) mapping population $\{0047\}$. ma: Associated with Xpsr163-4A\{0047\}.

73.Yellow Berry Tolerance

QTL : A QTL for yellow berry tolerance, contributed by RS111, was associated with Xgwm190-5D and Xgwm174-5D in a RIL population from RS111/CS \{0237\}. A tolerance QTL contributed by CS, the susceptible parent, was detected on $6 B\{0237\}$.

Proteins

74.Proteins

74.1. Grain protein content

Pro1\{777\}. 5DL\{777\}. s: CS $^{*} 6 /$ Hope 5D\{777\}.
May be identical to Vrn3.
Pro2\{777\}. 5DS\{777\}. s: CS*6/Hope 5D\{777\}.
QGpc.ccsu-2D\{0015\}. 2DL\{0015\}. ma: Association with microsatellite locus Xwmc41-2D accounted for 19% of the variation in grain protein content between PH132 and WL711\{0015\}.
QGpc.ndsu-6B\{623\}. 6BS\{623\}. tv: Langdon\{623\}. QGpc.ndsu-6Ba\{623\}. tv: Langdon\{623\}.
QGpc.ndsu-6Bb\{623,0071\}. tv: Langdon-T. dicoccoides 6B\{623\}. v: Glupro\{0179\}.
ma: QGpc.ndsu-6B was associated (LOD score = 18.9) with the interval Xmwg79-6B -
Xabg387-6B. These loci were mapped in 6BS: Xmwg79-6B - 5.9 cM - Xabg387-6B - 9.0
cM - centromere\{623\}; Located in the 4 cM interval flanked by $X m w g 79-6 B$ and
Xcdo365-6B\{0244\}; Flanking microsatellite markers and PCR-specific markers for Glupro are available\{0179\}.
QPro.mgb-4B. Associated with Gai1 and Xpsr622-4B \{110\} ${ }^{2}$.
QPro.mgb-5A. Associated with Xpsr911-5A $\{110\}^{2}$ and Xcdo412-5A\{0343\}*.
QPro.mgb-6A.1. Associated with Xpsr167-6A and XksuG8-6A \{110\} ${ }^{2}$.
QPro.mgb-6A.2. Associated with Xmgb56-6A $\{110\}^{2}$ and Xpsr627-6A\{0343\} ${ }^{*}$.
QPro.mgb-6B. Associated with Gli-B2-6B $\{110\}^{2}$ and Nor-2\{0343\}*. ma: QGpc.ndsu-6B was associated (LOD score $=18.9$) with the interval $\mathrm{Xmwg} 79-6 B-X a b g 387-6 B$. These loci were mapped in 6BS: Xmwg79-6B-5.9cM - Xabg387-6B-9.0 cM - centromere\{623\}.
Qpro.mgb-7A. Associated at $\mathrm{P}<=0.01$ with Pan2\{0343\}*.
QPro.mgb-7B. Associated with Xpsr490(Ss1)-7B, Pc $\{110\}^{2}$ and Xutv913-7B\{0343\}*.
QTLs for grain protein content were detected on chromosome arms 6AS (associated AFLP marker, $X E 38 M 60_{200}$) and 1BL (associated RFLP marker, Xcdo1188-1B) in Courtot/Chinese Spring \{0141\}.
Nine QTLs (51\% of the variation) were mapped in cross 'Forno'/ 'Oberkulmer' spelt $\{0280\}$. A QTL for grain and flour protein content, contributed by CS, was associated with XTri$1 D /$ Centromere in a RSL population from the cross Cheyenne (high quality wheat)/CS (low quality wheat) $\{0251\}$.

74.2. Enzymes

74.2.1. Acid phosphatase

Acph-A1\{504\}. [Acph2\{516\},Acph3\{516\},Acph-B1\{936\}]. 4AS\{504,516\}. v: CS.
Acph-B1\{504\}. [Acph4\{516\},Acph8\{516\},Acph-A1\{936\}]. 4BL\{504,516\}. v: CS.
Acph-D1. [Acph5\{516\},Acph6\{516\}]. 4DL\{504,516\}. v: CS.
Acph-H1 11153$\} .4 \mathrm{H}\{1153\}$. ad: CS/Betzes.
Acph-M ${ }^{v} 1\{237\}$. [Aph-v\{237\},Acph-M $\left.{ }^{\nu} 1\{985\}\right] . \mathrm{M}^{\mathrm{V}}\{237\}$. tr: H-93-33\{984\}.
Acph-R1. 7R\{1457\}.7RS\{506\}. ad: CS/Imperial.
Acid phosphatase gene loci were reported for 7RL in S. cereale \{1251\}, chromosomes L1 (= $\left.7 \mathrm{Ag}^{\mathrm{i}}\right)$ and $\mathrm{L} 4\left(=4 \mathrm{Ag}^{\mathrm{i}}\right)$ of Thin. intermedium $\{361\}$, and chromosome E of Ae. umbellulata \{69\}. Two loci on 7R were separated by $25+$ or- $5.2 \mathrm{cM}\{1534\}$.Wehling $\{1559\}$ identified four acid phosphatase loci in S. cereale, three of which were located in 7R.

Acph-S ${ }^{s} 1\{1140\} .4 S^{s}\{1140\}$. ad: CS/T. searsii.

74.2.2. Alcohol dehydrogenase (Aliphatic)

Adh-A1\{502\}. [Adh $\left.{ }_{B}\{502\}, A d h-B 1\{504\}\right]$. 4A\{502\}.4AL\{504,516\}. v: CS.
Adh-B1\{501,502\}. [Adh $\{501\}$, Adh $\left._{A}\{502\}, A d h-A 1\{504\}\right] .4 B\{502\} .4 \mathrm{BS}\{504,516\}$. v: CS.
Adh-B1a\{1442\}. [Adh $11\{501\}, A d h-A 1 a\{1442\}]$. v: CS. tv: PI $226951\{501\} ;$ Malavika\{1442\}.
Adh-B1b $\{1442\}$. [Adh $\left.{ }_{12}\{501\}, A d h-A 1 b\{1442\}\right]$. v: Rageni derivative\{1443\}. tv: CI 4013\{501\}; Bijaga Yellow\{1442\}.
Adh-B1b was the only variant $A d h-1$ allele detected in study of a large number of T. aestivum and T. turgidum accessions \{503\}.
Adh-C1 \{1278\}. [G\{1278\}]. ad: T. aestivum cv.Alcedo / Ae. caudata line G.
Adh-D1\{504\}. [Adh $\left.h_{D}\{502\}\right]$. 4D\{502\}.4DS\{504,516\}. v: CS. ma: Adh-D1 [Adh1, Adh2]
was mapped 4cM distal to Xpsr163-4D and closely proximal to Xcsiha114-4D. 1
[XcsIHA114-1a'] \{757\}.
Adh-Ag ${ }^{\boldsymbol{i}}\{560\},\{374\}$. [Adh-X1\{361\}]. $4 \mathrm{Ag}^{\mathrm{i}}\{560\}$. ad: Vilmorin 27/Thin. intermedium; Caribo/Thin. intermedium.
Adh-E1\{518\}. 4ES\{518\}. ad: CS/E. elongata.
Adh-H1 $\{520\}$. $4 \mathrm{H}\{520\}$. ad: CS/Betzes.

Adh-R1\{1457\}. [AdhR2\{582\}]. 4R\{582,1457\}.4RS\{506\}. ad: CS/Imperial\{1457,506\};
FEC28/Petkus\{043\}; Holdfast/King II\{582\}.
Adh-V1\{1026,242\}. 4V\{1026\}. ad: CS/D. villosum.
Three Adh genes were identified in Hordeum vulgare and H. spontaneum \{144,490,493,520\}. Two of these were tightly linked at the Adh-H1 locus $\{144\}$. The third gene was tentatively located in 5H $\{490\}$.
A low-level of aliphatic alcohol dehydrogenase activity is commonly observed on zymograms in the absence of added substrate \{513\}; this may account for the observation of wheat lactate dehydrogenase that was reported in $\{1465\}$.
The gene series formerly designated Adh-2 and Adh-3 appear under 2.20. Aromatic Alcohol Dehydrogenase

74.2.3. Aminopeptidase

Amp-A1\{504\}. 6AS\{504,516\}. v: CS.
Amp-A1a. v: CS\{1533\}.
Amp-A1b. v: Vitka\{1533\}.
Amp-B1\{504\}. 6BS\{504,516\}. v: CS.
Amp-B1a. v: CS\{1533\}.
Amp-B1b. v: Iskra\{1533\}.
Amp-B1c\{703,1244\}.Null allele v: T. spelta IPSR 1220017\{703\}; Sinvalocho M.A\{1244\}.
Amp-C1\{1278\}. 6D\{1278\}. ad: Alcedo/Ae. caudata line D.
Amp-D1\{504\}. 6DS\{504,516\}. v: CS.
Amp-D1a\{703\}. v: CS.
Amp-D1b\{703\}. v: Sears' Synthetic IPSR1190903.
Amp-Age ${ }^{e}$ \{1575\}. $6 \mathrm{Ag}^{\mathrm{e}}\{1575\}$. ad,su: Rescue/Thin. elongatum.
Amp- $\boldsymbol{A g}^{\boldsymbol{i}} \mathbf{1}\{703\}$. $6 \mathrm{Ag}^{\mathrm{i}}\{703\}$. ad: Vilmorin 27/Thin. intermedium.
Amp-E1\{518\}. 6E\{518\}. ad: CS/E. elongata.
Amp-H1\{520\}. 6H\{520\}. ad: CS/Betzes.
Amp-R1\{1457\}. 6R\{1457,1280\}. ad: CS/Imperial\{1457\}; Holdfast/King II\{1280\}.

Amp-A2\{703\}. 4AL\{703\}. v: CS.
Amp-A2a\{703\}. v: CS.
Amp-A2b\{703\}. v: T. spelta IPSR 1220017.
Amp-B2\{703\}. 4BS $\{703\}$. v: CS.
Amp-B2a\{703\}. v: CS.
Amp-B2b\{703\}. v: Timstein.
Amp-B2c\{703\}. v: Hope.
Amp-D2\{703\}. 4DS\{703\}. v: CS.
Amp-D2a\{703\}. v: CS.
Amp-D2b\{703\}. v: Sears' Synthetic IPSR 1190903.
Amp-D2c\{703\}. v: Bersee.
Amp- $\boldsymbol{A g}^{\boldsymbol{i}} \mathbf{i}\{703\}$. $4 \mathrm{Ag}^{\mathrm{i}}\{703\}$. ad: Vilmorin27/Ag. intermedium.
Amp-E2\{703\}. 4E\{703\}. ad: CS/E. elongata.
Amp-H2\{703\}. 4H\{703\}. ad: CS/Betzes.
Amp- $\boldsymbol{H}^{\text {ch }} 2\{703\} . \mathrm{HH}^{\mathrm{ch}}\{703\}$. ad: CS/H. chilense.
Amp-J2\{703\}. 4J\{703\}. ad: CS/Thin. junceum.
Amp- $\boldsymbol{M}^{\mathrm{v}} 2\{235\} . \mathrm{MM}^{\mathrm{v}}\{235\}$. su: H-93-33\{235\}.
Amp-R2\{703\}. 4R\{703\}.4RS\{702,093\}. ad: CS/Imperial.
Amp-S $\mathbf{S}^{l} 2\{703\}$. $4 \mathrm{~S}^{\mathrm{l}} \mathrm{L}\{703\}$. ad: CS/Ae. sharonensis $\{180\}$. $\operatorname{tr}: 4 \mathrm{DS} .4 \mathrm{DL}-4 \mathrm{~S}^{\mathrm{l}} \mathrm{L}\{660\}$.
Amp-V2\{703\}. 4V\{703\}. ad: CS/D. villosum.
Amp-A3\{703\}. 7AS\{703\}. v: CS.
Amp-A3a\{703\}. v: CS.
Amp-A3b\{703\}. v: Timstein.
Amp-H3\{703\}. 7H\{703\}. ad: CS/Betzes.

74.2.4. Alpha-amylase

$\boldsymbol{a}-A m y-A 1\{007\}$. [Amy $\left.{ }_{A}\{1082\}\right]$. 6AL $\{412,1082\}$. v: CS.
a-Amy-A1a\{007\}. [Amy 6A1\{1084\}]. v: CS.
$\boldsymbol{a}-\mathbf{A m y}-\mathbf{A 1 b}^{5}\{007\} . \quad$ v: Bezostaya 1; Kavkaz.
$\boldsymbol{a}-A m y-A 1 c^{5}$. [Amy 6A1 $\left.{ }^{m}\{1084\}\right]$. v: Aka.
a-Amy-B1\{007\}. [Amy6B\{1082\}]. 6BL\{412,1082\}. v: CS.
a-Amy-B1a\{007\}. [Amy 4\{1084\},Amy 6B1\{1084\},Amy 6B2 $\left.{ }^{\circ}\{1084\}\right]$. v: CS\{007\}; Rare.
$\boldsymbol{a}-A m y-B 1 b\{007\}$. [Amy $4^{m}\{1084\}, A m y$ 6B1 ${ }^{\circ}\{1084\}, A m y$ 6B2\{1084\}]. v: Mara\{007\}.
a-Amy-B1c\{007\}. [Amy 4\{1084\},Amy 6B1\{1084\},Amy 6B2\{1084\}]. v: Sava\{007\}; Rare.
a-Amy-B1d\{007\}. [Amy $\left.4^{m}\{1084\}, A m y ~ 6 B 1^{\circ}\{1084\}, A m y 6 B 2^{\circ}\{1084\}\right]$. v: Sicco\{007\}; Rare.
a-Amy-B1e\{007\}. [Amy $\left.4^{m}\{1084\}, A m y ~ 6 B 1^{4^{\prime}}\{1084\}, A m y ~ 6 B 2^{\circ}\{1084\}\right]$. v: CappelleDesprez\{007\}.
\boldsymbol{a}-Amy-B1f \{007\}. [Amy $4^{m}\{1084\}, A m y ~ 6 B 1^{4}\{1084\}, A m y$ 6B2 $\left.{ }^{\circ}\{1084\}\right]$. v: Sappo\{007\}. $\boldsymbol{a}-A m y-B 1 g\{007\}$. [Amy 4\{1084\},Amy 6B1 $\left.{ }^{4}\{1084\}, A m y ~ 6 B 2^{\circ}\{1084\}\right]$. v: Cheyenne\{007\}. \boldsymbol{a}-Amy-B1h $\{007\}$. [Amy $\left.4\{1084\}, A m y ~ 6 B 1^{\circ}\{1084\}, A m y 6 B 2^{\circ}\{1084\}\right]$. v: T. macha Line $1\{007\}$; Rare.
Two types of nomenclature were assigned to the genes encoding the a-AMY-1 isozymes. In one, allelic states were defined for individual isozymes $\{1084\}$ whereas in the other, several isozymes were considered to be the products of compound loci $\{007,412\}$. This listing shows the 'alleles' described in $\{1084\}$ which are assumed in $\{007\}$ to be synonymous with the a-Amy-B1a through $a-A m y$-B1h nomenclature. Amy 4 and Amy 4^{1} are unmapped alternatives $\{1084\}$ which appear to be identical to zymogram bands [bands 9 and 9b \{007\}] forming part of the a-Amy-B1phenotype. Amy 6B1 [with forms Amy 6B1 ${ }^{\circ}$, and $A m y 6 B 1^{4}$, considered to be mutually exclusive \{1084\}] and Amy

6B2 [with forms Amy 62 and $A m y ~ 6 B 2^{\circ}\{1084\}$] describe further aspects of $a-A m y-B 1$ \{007\}. See a-Amy1 below for further consideration of Amy 6B2 \{1084\}.
a-Amy-D1\{007\}. [Amy6D\{1082\}]. 6DL\{412,1082\}. v: CS.
a-Amy-D1a\{007\}. [Amy6D1\{1084\},Amy 6D2\{1084\}]. v: CS.
$\boldsymbol{a}-$ Amy-D1b\{007\}. [Amy6D1\{1084\},Amy 6D2\{1084\}]. v: Prelude\{1082\}; Capelle-
Desprez\{007\}.
a-Amy-D1c. [Amy6D1m $\{1084\}$, Amy 6D2\{1084\}]. v: T. spelta var. duhamelianum.
$\boldsymbol{a}-\mathbf{A m y - A g} \boldsymbol{g}^{\boldsymbol{i}}\{374\}$. $6 \mathrm{Ag}^{\mathrm{i}}\{374\}$. ad: Vilmorin 27/Thin. intermedium.
a-Amy-E1\{013\}. 6E \{013\}. ad: CS/E. elongata.
a-Amy-H1. [a-Amy1\{146\}]. 6H\{146,1051\}. ad: CS/Betzes.
a-Amy-R1\{013\}. 6RL\{013\}. su,ad: CS/Imperial; CS/King II; Holdfast/King II.
$\boldsymbol{a}-A m y-\boldsymbol{R}^{\boldsymbol{m}} \mathbf{1}\{013\}$. $6 \mathrm{R}^{\mathrm{m}} \mathrm{L}\{013\}$. ad: CS/S. montanum.
$\boldsymbol{a}-A m y-\mathbf{S 1}\{598\}$. 6SS\{598\}. v: Wembley derivative 31. al: Ae. speltoides.
It was estimated \{902\} that there are two $a-A m y-1$ genes in 6A and five or six in both 6B and 6 D , and three or four $a-A m y-2$ genes at each of the 7A, 7B, and 7D loci.
a-Amy-A2\{007\}. [Amy 7A $\{1082\}]$. 7AL $\{412,1082\}$. v: CS.
a-Amy-B2\{007\}. [Amy $\left.{ }_{7 B}\{1082\}\right]$. 7BL $\{412,1082\}$. v: CS.
a-Amy-B2a\{412\}. [Amy 7B1\{1084\},Amy 7B2\{1084\}]. v: CS.
a-Amy-B2b\{412\}. [Amy 7B1\{1084\},Amy 7B2 $\left.{ }^{m}\{1084\}\right]$. v: Hope.
The alternative states of Amy 7B2, namely, Amy 7B2 and Amy 7B2 ${ }^{m}$ \{1084\}, are identical to the variation in band 2 \{412\}. The complete description of the $a-A m y-B 2$ variation also includes variation in band 11 \{412\}.
$\boldsymbol{a}-A m y-D 2 .\left[\right.$ Amy $\left._{7 D}\{1082\}\right]$. 7DL $\{412,1082\}$. v: CS.
a-Amy-D2a\{412\}. [Amy 7D1\{1084\}]. v: CS.
$\boldsymbol{a}-A m y-D 2 b\{417\}$. [Amy 7D1º $\{1084\}]$. v: Largo\{007\}; Sears' Synthetic\{007\};
VPM1\{417\}.
$\boldsymbol{a}-A m y-\boldsymbol{A g}^{\boldsymbol{i}} \mathbf{2}\{374\} .7 \mathrm{Ag}^{\mathrm{i}}\{374\}$. ad: Vilmorin 27/Thin. intermedium.
a-Amy-E2\{013\}. 7EL\{013\}. ad: CS/E. elongata.
a-Amy-H2. [a-Amy2\{146\}]. 7HL\{146,1051,793\}. ad: CS/Betzes.
$\boldsymbol{a}-A \boldsymbol{m y}-\boldsymbol{H}^{\text {ch }} 2\{1015\} . \mathrm{HH}^{\text {ch }}$ beta $\{1015\}$. su,ad: CS/H. chilense.
a-Amy-R2\{013\}. 7RL\{013\}. su,ad: CS/Imperial; CS/King II; Holdfast/King II.
$\boldsymbol{a}-A \boldsymbol{m y}-\boldsymbol{S}^{\boldsymbol{b}} \mathbf{2}\{013\} .7 \mathrm{~S}^{\mathrm{b}}\{013\}$. ad: Holdfast/Ae. bicornis.
a-Amy-U2\{013\}. 7U\{013\}. ad: CS/Ae. umbellulata.
Three other a-Amy loci, namely, Amy 6B2, Amy 6D2, and Amy 7B2, were reported \{1084\}. No variation was observed for the products of Amy 6D2 and Amy 7B2, although nullisomic analysis located the genes in 6DL and 7B, respectively. In accordance with the Guidelines, these genes are assumed to be part of the $a-A m y-D 1$ and $a-A m y-B 2$ loci, respectively. Amy $6 B 2$ was observed to produce alternative phenotypes \{1084\}. In a test of the segregation of these phenotypes relative to two alternative products of Amy 6B1, the two loci were found to be linked with a recombination frequency of 20.6% \{1084\}. However, an attempt to confirm the presence of more than one a-Amy locus in 6BL was unsuccessful $\{007\}$.
a-Amy1\{1084,1083\}. [Amy 6B2\{1084\},Amy-B2\{1083\}]. 6BL\{1084,1083\}. v: CS.
a-Amy1a\{1083\}. [a-Amy-B1a]. v: CS.
$\boldsymbol{a}-A m y 1 b\{1083\}$. [a-Amy-B1b]. v: CS.
a-Amy1c\{1083\}. [a-Amy-B4]. tv: T. durum ssp. georgicum.
The presence of a-Amy1 reported in $\{1084\}$ was confirmed by segregational tests in a CS/Jones Fife population and in a population derived from a tetraploid cross $\{1083\}$. The recombinations with a-AmyB1 were 9.3% and 22.3%, respectively.
A further set of a-amylase genes, Xa-Amy-5 [a-Amy3], was identified in 5A, 5B and 5D by cross-hybridization with a-AMY-1 and a-AMY-2 probes $\{080\}$. Only one gene copy appears to be present at each locus. In rye, evidence was obtained for three a-Amy-1
genes, two or three a-Amy-2 genes and three $a-A m y-3$ genes $\{907\}$. Synthesis of a-amylase isozymes controlled by a-Amy-1 genes on chromosomes 6A and 6D is reduced in DT6BS compared to euploid CS. This result suggests the presence of a gene(s) on the long arm of chromosome 6B, which is (are) required for GA-induced alpha-amylase synthesis in the aleurone $\{0072\}$.

```
74.2.5. Beta-amylase
    b-Amy-A1{008,227}. [b-Amy-A2{008},b-Amy-B1{1331}]. 5AL{008,227}. v: CS{008}. s:
    CS/Federation{227}.
    b-Amy-A1a{008}. [b-Amy-A2a{008},b-B1a{936}]. v: CS.
    b-Amy-A1b{008}. [b-Amy-A2b{008},b-B1b{936}]. v: Koga II..
    b-Amy-A1c{008}. [b-Amy-A2c{008},b-B1c{936}]. v: T. macha IPSR 1240005.
    b-Amy-A1d{008}. [b-Amy-A2d{008},b-B1d{936}]. v: Holdfast.
    b-Amy-A1e{008}. [b-Amy-A2e{008},b-B1e{936}]. v: Bezostaya I.
b-Amy-B1{628}. [b-Amy-A1{008}]. 4BL{008,628}. v: CS.
    b-Amy-B1a{1330}. [b-Amy-A1a{008,1330}]. v: CS.
    b-Amy-B1b{1330}. [b-Amy-A1b{008,1330}]. v: Sears' Synthetic IPSR }1190903
    b-Amy-B1c{1330}. [b-Amy-A1b{008},b-Amy-A1c{1330}]. v: Ciano }67
    b-Amy-B1d{1330}. [b-Amy-A1c{1330,400}]. v: Manella.
    b-Amy-C1{1278}. B{1278}. ad: Aestivum cv. Alcedo /Ae. caudata line B.
    b-Amy-D1{008}. 4DL{008,628}. v: CS.
    b-Amy-D1a{008}. v: CS.
    b-Amy-D1b{008}. v: Bersee.
    b-Amy-D1c{008}. v: Sears' Synthetic. Rare.
        Previously listed alleles b-Amy-D1d and -D1e were found to be b-Amy-B1 alleles {400}.
        Two b-Amy-D}\mp@subsup{D}{}{t}1\mathrm{ alleles were predominant in }60\mathrm{ accessions of T. tauschii {1578}.
    b-Amy-Agi}\mp@subsup{\boldsymbol{1}}{{}{{168,013}. 4Agg}{168}. ad: Vilmorin27/Thin. intermedium.
    b-Amy-E}\mp@subsup{\boldsymbol{E}}{}{\boldsymbol{b}}{661}. 5\mp@subsup{E}{}{\textrm{b}}\textrm{L}{661}. tr: 5AS.5E 'L.
    b-Amy-H1. 4H{1153}. ad: CS/Betzes.
    b-Amy-H}\mp@subsup{\boldsymbol{H}}{}{\mathrm{ ch}}1{013}. 4H [4 {013}. ad: CS/H. chilense.
    b-Amy-R1. [b-Amy-R2{013},b-AmyR1{043}]. 5R{103,1280}.5RL{043}. ad: FEC
    28/Petkus{043,82}; Holdfast/King II{043,1280}. tr: CS/Imperial 5BL-5RL{043}.
    b-Amy-S'1{013}. 4S {013}.D{013}. ad: CS/Ae. sharonensis D{013}. su: CS/Ae.
        sharonensis. ad: CS/Ae.longissima.
    b-Amy-U1{013}. [b-Amy-U2{013}]. 5U{013}. su: CS/Ae. umbellulata.
        A second set of loci with homology to b-Amy-1 genes was identified in 2AS, 2BS and 2DS
        and designated the Xb-Amy-2 [b-Amy-2 {1331}] set. Evidence for these genes derives from
        cross-hybridization with a b-AMY-H1 cDNA probe {1331}. Further members of the same set
        were identified in 2H {732}, and 2R and 2U {1331}.
        Sixty Ae. tauschii lines revealed two b-Amy-Dt1 alleles {1578}.
```


74.2.6. Endopeptidase

Ep-A1\{516\}. 7AL\{516\}. v: CS.
Ep-A1a\{516,708\}. v: CS.
An EP isozyme encoded by Ep-A1a of CS is visible on zymograms following starch gel electrophoresis $\{516\}$. The product of this allele is not observable, however, on zymograms following isoelectric focusing $\{708\}$.
$\boldsymbol{E p}-\mathbf{A 1 b}\{708\}$. v: Cappelle-Desprez\{708\}; Hobbit\{704\}; Rendezvous\{1603\}.
Ep-A1c\{708\}. v: Sears' Synthetic.

Ep-A1d\{894\}.Isozyme 6. v: PI 294994\{894\}.
Ep-B1\{516\}. [Ep1\{516\}]. 7BL\{516\}. v: CS.
Ep-B1a\{708\}. v: CS.
Ep-B1b\{708\}. v: Cappelle-Desprez.
Ep-B1c\{708\}. v: Ciano 67.
Ep-B1d\{708\}. v: Bersee.
Ep-B1e\{708\}. v: Sears' Synthetic.
Ep-D1\{516\}. 7DL\{516\}. v: CS.
Ep-D1a\{708\}. v: CS.
Ep-D1b. [EP-V1\{973\}]. v: 5L 219\{1521\}; H-93-70\{1521\}; Hyak\{021\}; Madsen\{020\}; Rendezvous 708$\}$; VPM1\{973\}.
Ep-D1c\{708\}. v: Sears' Synthetic.
Ep-D1d\{1587\}. Null allele. v: Wheats with Lr19\{1587\}.
Ep-D1e\{894\}.Isozyme 5. v: PI 294994\{894\}.
Ep-E1\{518\}. 7EL\{518\}. al: CS/E. elongata.
Ep-H1\{520\}. 7HL\{520\}. al: CS/Betzes.
$\boldsymbol{E p}-\boldsymbol{H}^{\text {ch }} \mathbf{1}\{708\}$. $7 \mathrm{H}^{\mathrm{ch}}\{708\}$. su: CS/H. chilense.
Ep-Hti\{1037\}. $7 \mathrm{H}^{t} \mathrm{p}\{1037\}$. ad: CS/E. trachycaulus.
$\boldsymbol{E p}-\boldsymbol{M}^{\nu} 1\{985\} . \quad\left[E p-M^{v} 1\{985\}\right] . \quad 7 \mathrm{M}^{\mathrm{v}} \mathrm{L}$. su: $7 \mathrm{M}^{\mathrm{v}}\{7 \mathrm{D}\}$.
Ep-R1\{092,266,708\}. 6RL\{092\}. ad: CS/Imperial.
$\boldsymbol{E p}-\boldsymbol{S}^{\boldsymbol{b}} \mathbf{1}\{708\} .7 \mathrm{~S}^{\mathrm{b}}\{708\}$. su: Holdfast/Ae. bicornis.
Ep- $\boldsymbol{S}^{\boldsymbol{1}} \mathbf{1}\{517\} .4 \mathrm{~S}^{1}\{517\}$. ad: CS/Ae. longissima.
Ep- $\boldsymbol{S}^{s} 1\{1140\}$. $7 \mathrm{~S}^{\mathrm{s}}\{1140\}$. ad: CS/T. searsii.
Ep-U1\{708\}. 7U\{708\}. su: CS/Ae. umbellulata.
Ep-V1\{708\}. 7V\{708\}. ad: CS/D. villosum.
Ep-B2\{599\}. 6BS\{599\}.
An Ep locus was located in 4RS in King II \{1280\}, using Holdfast/King II addition lines and in 4R in Imperial \{266\} using Chinese Spring/Imperial addition lines.

74.2.7. Esterase

Genetic control of esterases [carboxylic ester hydrolases (E.C.3.1.1.1)] was the subject of a comparative study \{814\}.

74.2.7.1. EST-1

EST-1 is a dimeric enzyme that electrofocuses around pH 4.0 and is expressed in all tissues except endosperm $\{814\}$.
Est-A1. [Est $\left.t_{A}\{061\}\right]$. 3AS $\{060\}$. v: CS.
Est-B1. [Est $\left.\boldsymbol{B}_{\text {}}\{061\}\right]$. 3B $\{060\} .3 B S\{100\}$. v: CS.
Est-D1. [Est $\{061\}]$. 3D $\{060\} .3 \mathrm{DS}\{100\}$. v: CS.
Est-E1\{518\}. 3ES\{518\}. ad: CS/E. elongata.
Est-H1\{814\}. 3H\{814\}. ad: CS/Betzes.
Est-R1. [Est $\{061\}]$. 3R\{060,1254\}. ad: CS/Imperial $\{060\}$; Holdfast/King II\{100\}; Kharkov/Dakold\{100\}.
Est- $\mathbf{S}^{1} \mathbf{1}\{814\}$. $3 S^{1}\{814\}$. ad: CS/Ae. longissima. Each of 208 hexaploid accessions carried the same Est-1 alleles except accessions of T. compactum var. rubriceps, each of which carried an Est-B1 or Est-D1 electrophoretic mobility variant $\{585\}$.

EST-2 is a coleoptile-specific monomeric enzyme that electrofocuses at low pI.
Est-A2. [Est- $\left.2_{A}\{585\}\right]$. 3A\{585\}. v: CS.
Est-B2. [Est-2 $\left.{ }_{B}\{585\}\right]$. 3BL\{585\}. v: CS.
Est-D2. [Est-2 $\left.{ }_{D}\{585\}\right]$. 3DL\{585\}. v: CS.
Among 208 hexaploid accessions, an apparent Est-B2 null allele occurred frequently in accessions of T. macha and T. sphaerococcum and occasionally in accessions of T. compactum. The allele was not observed in T. aestivum and T. spelta accessions \{585\}.

74.2.7.3. EST-3

EST-3 is a monomeric enzyme that is expressed in young seedlings (this enzyme was not observed in \{814\}.
Est-B3. [Est-3 $\left.3_{B}\{585\}\right]$. 7BS\{585\}. v: CS.
Est-D3. [Est-3 $\left.{ }_{D}\{585\}\right]$. 7DS\{585\}. v: CS.
Est-H3\{520\}. 7H\{520\}. ad: CS/Betzes.
One accession carrying an apparent Est-B3 null allele and one carrying an apparent Est-D3 null allele were found among 208 hexaploid accessions $\{585\}$.
A 7AS locus encodes three esterase isozymes in immature grains $\{009\}$.

74.2.7.4. EST-4

EST-4 is a monomeric, leaf-specific enzyme that electrofocuses around pH 4.5.
Est-A4. [Est-4 $\left.{ }_{A}\{585\}\right]$. 6AL\{585,919\}. v: CS.
Est-B4. [Est-4 $\left.{ }_{B}\{585\}\right]$. 6BL\{585,919\}. v: CS.
Est-D4. [Est-4D\{585\}]. 6DL\{585,919\}. v: CS.
Probable Est-A4 and Est-D4 null alleles were detected in several accessions of T. compactum var. rubriceps \{585\}; otherwise, no Est-4 variant occurred among 208 hexaploid accessions \{585\}.
An esterase gene was located in chromosome $\mathrm{L} 7\left(=6 \mathrm{Ag}^{\mathrm{i}}\right)$ of Thin. intermedium $\{361\}$.

74.2.7.5. EST-5

EST-5 consists of 20 or more monomeric, grain-specific isozymes that electrofocus between pH 5.6 and 7.0.
Est-A5\{009\}. 3AL\{009\}. v: CS.
Est-A5a\{009\}. v: CS.
Est-A5b\{009\}. v: Kalyansona\{009\}; T. compactum AUS12084\{756\}.
Est-B5\{009\}. 3BL \{009\}. v: CS.
Est-B5a\{009\}. v: CS.
Est-B5b\{009\}. v: Big Club.
Est-B5c\{009\}. v: Timstein.
Est-B5d\{009\}. v: Sears' Synthetic.
Est-D5\{009\}. 3DL\{009\}. v: CS.
Est-D5a\{009\}. v: CS.
Est-D5b\{009\}. v: T. macha.
Est-D5c\{009\}. v: Hobbit 'S'.
Est-D5d\{009\}. v: T. macha Line 1.
Est-D5e\{756\}. v: T. macha WJR 38548.
Encoding of the endosperm esterases of hexaploid wheat by 12-15 genes in five compound loci located in 3AL, 3BL, 3DL, 3AS and 3DS was postulated in $\{1204\}$. Three and six alleles at $E s t-D^{t} 5$ (in T. tauschii) were reported in $\{756\}$ and $\{1578\}$,
respectively.
In S. cereale, in addition to Est-R1, genes encoding leaf esterases were located in three chromosomes \{1561\}. These included a gene designated Est8 in 6R in cvs. Imperial and King II, a gene designated Est2 and two genes, designated Est6 and Est7, which are part of a separate compound locus $\{1560\}$, in 5RL in Imperial, and a gene designaged Est10 in 4R of King II and 4RL of Imperial. In Hordeum vulgare, genes encoding leaf esterases were located in $3 \mathrm{H}\{1071$; see also, 520,580$\}$ and $7 \mathrm{H}\{520\}$.
Est- $\boldsymbol{A g}^{\boldsymbol{i}} \mathbf{5}\{374\}$. $3 \mathrm{Ag}^{\mathrm{i}}\{374\}$. ad: Vilmorin 27/Thin. intermedium.
Est-H5\{010\}. 3H\{010\}. ad: CS/Betzes.
Est- $\boldsymbol{H}^{\text {ch }} 5\{010\}$. $3 H^{\text {ch }}\{010\}$. ad: CS/H. chilense.
Est-R5\{010\}. [EstA\{737\}]. 6R\{043,1280\}. ad: CS/Imperial\{010,043\}; Kharkov/ Dakold 6RL\{010,1280\}; CS/King II\{010\}; Holdfast/King II\{043,1280\}.
A second S. cereale gene encoding grain esterases, designated EstB, was located in 4RL in King II and Petkus and in 7RS in Imperial \{737\}.
Est- $\boldsymbol{R}^{m} 5\{010\}$. [EstB\{737\}]. 6R ${ }^{\mathrm{m}}\{010\} .6 \mathrm{R}^{\mathrm{m}} \mathrm{L}\{737\}$. ad: CS/S. montanum.
Est- $\boldsymbol{S}^{\boldsymbol{b}} \mathbf{5}\{010\}$. $3 \mathrm{~S}^{\mathrm{b}}\{010\}$. su,ad: CS/Ae. bicornis.
Est-S ${ }^{l}\left\{\{010\}\right.$. $3 S^{1}\{010\}$. ad: CS/Ae. longissima.
Sixty Ae. tauschii lines revealed six Est- $D^{t} 5$ alleles $\{1578\}$.

74.2.7.6. EST-6

EST-6 is a dimeric enzyme that electrofocuses around pH 7.6 and is specific to endosperm. Est-A6\{1130\}. 2AS\{1130\}. v: CS.

Est-A6a\{1130\}. v: CS.
Est-A6b\{1130\}. v: Ceska Previvka.
Est-B6\{1130\}. 2BS\{1130\}. v: CS.
Est-B6a\{1130\}. v: CS.
Est-B6b\{1130\}. v: Hope.
Est-D6\{1130\}. 2DS\{1130\}. v: CS.
Est-D6a\{1130\}. v: CS.
Est-D6b\{1130\}. v: Sears' Synthetic IPSR 1190903.
Est-M6\{1130\}. 2MS \{1130\}. su: CS/Ae. comosa.
Est-R6\{370\}. 2RS\{370\}. al: DS2 x RxL10 rye popn.
EST-7 is a monomeric enzyme that electrofocuses in the same region as EST-6 but is specific to green tissues.
A group of leaf esterase isozymes controlled by the long arms of the homoeologous group 3 chromosomes were reported $\{919\}$. The relationship of these esterases to EST-2 and to the leaf esterases designed EST-6 reported in $\{629\}$ has not been determined.

A group of leaf esterase isozymes controlled by the long arms of the homoeologous group 3 chromosomes were reported \{919\}. The relationship of these esterases to EST-2 and to the leaf esterase designed EST-6 reported in $\{629\}$ has not been determined.

74.2.7.7. EST-7

EST-7 is a monomeric enzyme that electrofocuses in the same region as EST-6 but is specific to green tissues.
Est-A7\{812\}. 2AL\{812\}. v: CS.
Est-B7\{812\}. 2BL $\{812\}$. v: CS.
Est-D7\{812\}. 2DL\{812\}. v: CS.
Est-D7a\{812\}. v: CS.
Est-D7b\{812\}. v: Synthetic \{IPSR 1190903\}.

Est-E7\{812\}. 2E $\{812\}$. ad: CS/E. elongata.
Est-H7\{812\}. 2HL $\{812\}$. ad: CS/Betzes.
Est-R7\{812\}. 2RL\{812\}. ad: CS/Imperial. su: Holdfast/KingII.
Est- $\boldsymbol{R}^{m} 7\{812\}$. 2R ${ }^{m}$ alpha\{812\}. ad: CS/S. montanum.
Est-U7\{812\}. 2U\{812\}. ad: CS/Ae. umbellulata.
Est-V7\{812\}. 2V\{812\}. ad: CS/D. villosum.

74.2.7.8. EST-8

EST-8 consists of about 10 isozymes that electrofocus between pH 4.5 and 6.5 and are expressed only in vegetative tissues. EST-8 is likely to be the enzyme previously described in \{919\} and $\{629\}$.
Est-A8\{629,814\}. [Est-A6\{629\}]. 3AL\{629\}. v: CS.
Est-B8\{613,814\}. [Est-B6\{629\}]. 3BL\{629\}. v: CS.
Est-D8\{629,814\}. [Est-D6\{629\}]. 3DL\{629\}. v: CS.
Est-R8\{613,814\}. 6RL\{629\}. ad: CS/Imperial, CS/King II.

74.2.7.9. EST-9

EST-9 is a monomeric enzyme that electrofocuses around pH 5.0 and is expressed only in embryos.
Est-A9\{814\}. 3AS \{814\}. v: CS.
Est-B9\{814\}. 3BS $\{814\}$. v: CS.
Est-D9\{814\}. 3DS\{814\}. v: CS.

EST-2, EST-5 and EST-8 are controlled by genes on 3L and where a recombination test was possible between Est-D5 and Est-D8, no segregation was observed. The different gene symbols were retained because of the different tissue specificities and polymerisation profiles of the enzymes. The same arguments surround the EST-1 and EST-6 genes located in the 3S arms $\{814\}$.
The Est-6 gene of rye was mapped $\{249\}$. The Est-6 genes of wheat were mapped comparatively in the proximal regions of chromosomes $2 \mathrm{~S}\{256\}$. The Est-2, Est-5 and Est-8 were mapped to the extreme distal regions in the 3 L arms $\{247\}$.

74.2.8. Glucosephosphate isomerase

Gpi-A1 $\{507\}$. 1AS $\{195,507\}$. v: CS.
Gpi-B1 $\{507\}$. 1BS $\{195,507\}$. v: CS.
Gpi-D1\{507\}. 1DS 195,507$\}$. v: CS.
Gpi-D1a\{195\}. v: CS.
Gpi-D1b\{195\}. v: CS variant and certain CS aneuploids. Rare.
Varietal differences in GPI zymograms were noted in $\{1127\}$.
GPI zymogram phenotypes observed in Triticum and Aegilops species are reported in $\{456,457\}$.
No allelic variation at $G p i-D^{t} 1$ was found in 60 accessions of Ae. tauschii $\{1578\}$.
Gpi-Ag ${ }^{\boldsymbol{i}} \mathbf{1}\{361\},\{374\}$. [Gpi-X1\{361\}]. 1 $\operatorname{Ag}^{\mathrm{i}}\{361\}$. ad: Vilmorin 27/Thin. intermedium..
Gpi-E1\{518\}. 1ES\{518\}. ad: CS/E. elongata.
Gpi-H1 11153$\}$. 1HS\{1153\}. ad: CS/Betzes.
Gpi- $\boldsymbol{H}^{\text {ch }} 1\{195\}$. $1 \mathrm{H}^{\text {ch }}\{195\}$. ad: CS/H. chilense.
Gpi-R1\{195\}. 1R\{195\}.1RS\{779\}. ad: CS/King II\{195\}. al: 2a, 2b, and R14\{779\}.
Gpi- $\boldsymbol{R}^{\boldsymbol{m}} \mathbf{1}\{195\}$. 1R\{195\}. ad: CS/S. montanum.

Gpi-S ${ }^{l} 1\{1228\} . S^{1}\{517\} .1 S^{1} \mathrm{~S}\{1228\}$. ma: In Ae. longissima $2 \times$ Ae. longissima 10, Gpi-Sl 1 , two glutenin loci, and three gliadin loci were mapped relative to one another as follows: Glu$S^{l} 1-15.9 \mathrm{cM}-G p i-S^{l} 1-38 \mathrm{cM}-G l i-S^{l} 4-7.1 \mathrm{cM}-$ Glu-S $^{l} 3-0.9 \mathrm{cM}-\mathrm{Gli}^{l} \mathrm{~S}^{l} 1-5.6 \mathrm{cM}-$ Gli$S^{l} 5\{1228\}$; Glu-S ${ }^{l} 1$ is located in $1 S^{l} \mathrm{~L}$ and the other loci are in $1 S^{\mathrm{l}} \mathrm{S}$.
Gpi-S ${ }^{s} 1\{1140\}$. $1 S^{s}\{1140\}$. ad: CS/Ae. searsii.
Gpi-U1\{195\}. 1U\{195\}. ad: CS/Ae. umbellulata.
Gpi-V1\{1026\}. 1V\{1026,241\}. ad: CS/D. villosum.

74.2.9. Glutamic oxaloacetic transaminase

Got-A1 \{505\}. 6AS\{505\}. v: CS.
Got-B1\{505\}. 6BS\{505\}. v: CS.
Got-D1\{505\}. 6DS\{505\}. v: CS.
Got-A2\{505\}. 6AL\{505\}. v: CS.
Got-B2\{505\}. 6BL\{505\}. v: CS.
Got-D2\{505\}. 6DL\{505\}. v: CS. ma: Cent-Got-D2-2cm - Xpsr154-6D\{757\}.
Got-Age ${ }^{e} 2\{1575\}$. 6Ag ${ }^{\mathrm{e}}\{1575\}$. ad,su: Rescue/Thin. elongatum.
Got-E2\{518\}. 6EBeta\{518\}. ad: CS/E. elongata.
Got-H2\{520\}. 6H\{520\}. ad: CS/Betzes.
Got-R2\{1457\}. [Got3\{1559\}]. 6R\{1457\}.6RL\{1280\}. ad: CS/Imperial 6R\{1457\}; Holdfast/King II 6RL\{1280\}.
Got-V2\{1026,242\}. 6V\{1026\}. ad: Creso/D. villosum.
Got- $\boldsymbol{H}^{t} \mathbf{2}\{1037\}$. $6 \mathrm{H}^{\mathrm{t}}\{1037\}$. ad: CS/E. trachycaulus.
Got-A3\{505\}. 3AL\{505\}. v: CS.
Got-B3\{505\}. 3BL\{505\}. v: CS.
Got-C3\{1278\}. F\{1278\}. ad: T. aestivum cv. Alcedo /Ae. caudata line C.
Got-D3\{505\}. 3DL\{505\}. v: CS.
Got- $\boldsymbol{A g}^{e} \mathbf{3}\{521\}$. $3 \mathrm{Ag}^{e} \mathrm{~L}\{521\}$. ad: CS/TAP 67. su: CS/TAP 67. tr: Certain CS 3D/Ag lines.
Got-E3\{518\}. 3EL\{518\}. ad: CS/E. elongata.
Got-H3. [Got-b3\{090\}]. 3H\{090\}. ad: CS/Betzes.
Got- $\boldsymbol{H}^{\text {ch }} \mathbf{3}\{351\}$. $3 \mathrm{H}^{\mathrm{ch}}\{351\}$. ad: MA/H. chilense.
Got-R3\{1457\}. [Got3\{1559\}]. 3R\{1457\}. ad: CS/Imperial\{1457\}; Holdfast/ King II\{1253\}; Kharkov/Dakold\{1253\}.
Got-S $\boldsymbol{S}^{s} 3\{1140\}$. $3 S^{s}\{1140\}$. ad: CS/Ae. searsii.
Got-V3\{1518,242\}. 3VL\{1518\}. ad: Creso/D. villosum.
Got-R4. [Got1/7R\{1203\},Got2\{1559\}]. 7RL\{1203\}. al: S. cereale.
Wehling $\{1559\}$ identified a GOT locus designated Got1 in 4RL of S. cereale.

74.2.10. Hexokinase

Hk-B1\{006\}. 1BS 0006$\}$. v: CS.
Hk-D1\{006\}. 1DS\{006\}. v: CS.
Hk-A2\{810\}. 3A\{810\}. v: CS.
Hk-A2a\{810\}. v: CS.
Hk-A2b\{810\}. s: CS*/Sears' Synthetic 3A. v: Sears' Synthetic IPSR 1190903.
Hk-B2\{006\}. 3BS $\{006,810\}$. v: CS.
Hk-D2\{810\}. 3DS $\{810\}$. v: CS.
Hk-D2a\{810\}. v: CS.
Hk-D2b\{810\}. v: Sears' Synthetic IPSR 1190903.
Hk-E2\{006\}. 3ES \{006\}. ad: CS/E. elongata.

Allelic variation was observed in three of 55 hexaploid accessions $\{006\}$.

```
74.2.11. Lipoxygenase
    Lpx-A1{516}. [Lpx-B1{516}]. 4AL{516}. v: CS. ma: Xksu919(Lpx-1)-4A{0091}.
    Lpx-B1{516}. [Lpx-A1{516}]. 4BS{516}. v: CS. ma: Xcn110(Lpx-1)-4B{0269,0367}.
        Lpx-B1a{1533}. [Lpx-A1a{936}]. v: CS.
        Lpx-B1b{1533}. [Lpx-A1b{936}]. v: Bosanka{1533}.
    Lpx-D1{516}. 4DS{516}. v: CS.
    Lpx-E1{518}. 4ES{518}. ad: CS/E. elongata.
    Lpx-H1{716}. 4H{716}. ad: CS/Betzes.
    Lpx-A2{516}. 5AL{516}. v: CS. ma: Xksu919(Lpx-2)-5A{0091}.
    Lpx-B2{516}. 5BL{516}. v: CS. ma: Xksu919(Lpx-2)-5B{0091}; Xcn111(Lpx-2)-
        5B{0269}.
    Lpx-D2{516}. 5DL{516}. v: CS.
    Lpx-E2{518}. 5EL{518}. ad: CS/E. elongata.
    Lpx-H2{716}. 5H{716}. ad: CS/Betzes.
    Lpx-S'S{1140}. 5S S}{1140}. ad: CS/Ae. searsii.
    Lpx-V2{242}. 5V. ad: CS/D. villosum.
```


74.2.12. Malate dehydrogenase

Mdh-A1. [Mdh2A\{087\}]. 1AL\{087\}. v: CS.
Mdh-B1. [Mdh2B\{087\}]. 1BL\{101,087\}. v: CS.
Mdh-D1. [Mdh2D\{087\}]. 1DL\{087\}. v: CS.
Mdh-H1\{1153\}. 1HL\{1153\}. ad: CS/Betzes.
Mdh- $\boldsymbol{H}^{\text {ch }} \mathbf{1}\{352\}$. $1 \mathrm{H}^{\text {ch }}\{352\}$. ad: MA/H. chilense.
Mdh-R1. [Mdh2-1\{1252\}]. 1RL\{1252\}. ad: CS/Imperial 1R; Kharkov/Dakold 1R;
Holdfast/King II 1RL.
Mdh-S ${ }^{s} 1\{1140\}$. $1^{s}\{1140\}$. ad: CS/T. searsii.
Mdh-H2. [Mdh2-b2\{090\}]. 3H\{090\}.
Mdh-R2. [Mdh2-2\{1252\}]. 3R\{1252\}. ad: CS/Imperial.
A third set of dimeric MDH isozymes identified in mature grain are separable from MDH-1 and MDH-2 by their higher pI's in IEF \{811\}.
Mdh-A3\{811\}. 5AS. v: CS.
Mdh-A3a\{811\}. v: CS.
Mdh-A3b $\{811\}$. v: Bersee.
Mdh-B3\{811\}. 5BS. v: CS.
Mdh-B3a\{811\}. v: CS.
Mdh-B3b\{811\}. v: Hope.
Mdh-D3\{811\}. 5DS. v: CS.
Mdh-D3a\{811\}. v: CS.
Mdh-D3b\{811\}. v: Sears' Synthetic.
Mdh-E3\{811\}. 5ES. ad: CS/E. elongata.
Mdh-H3\{811\}. 5H. ad: CS/Betzes.
Mdh-U3\{811\}. 5U. ad: CS/Ae. umbellulata.
Mdh-R4\{360\}. 1RL\{360\}. v: Various crosses.

74.2.13. Peroxidase

Peroxidase (EC1.11.1.7) isozymes have high tissue specificity. Staining and electrophoretic systems are reviewed in $\{118\}$. PER-1, $-2,-3,-4$ and -5 are all reported in $\{816\}$.

74.2.13.1. PER-1

PER-1 is expressed in leaf $\{012\}$ and coleoptile $\{816\}$ tissues.
Per-B1\{012\}. 1BS $\{012,919\}$. v: CS.
Per-D1\{012\}. 1DS $\{012,919\}$. v: CS.
Per-D1a\{012\}. v: CS.
Per-D1b $\{012\}$. v: Sears' Synthetic.
Per- $\boldsymbol{H}^{\text {ch }} 1\{012\}$. $1 \mathrm{H}^{\text {ch }}\{012\}$. ad: CS/H. chilense.
Per-R1\{012\}. [Prx\{1561\}]. 1RS\{012,1561\}. ad: CS/King II\{012\}; Holdfast/King II\{1561\}. tr: Veery 'S' $\{012\}$.
Per-V1\{241\}. 1V\{241\}. ad: Creso/D. villosum.

74.2.13.2. PER-2

PER-2 is expressed in young leaf $\{118\}$, coleoptile and root $\{816\}$ tissues.
Per-A2. 2AS. v: CS.
Per-A2a\{816\}. v: CS.
Per-A2b\{816\}. v: Timstein.
Per-B2\{118\}. 2BS\{118\}. v: CS.
Per-B2a\{816\}. v: CS.
Per-B2b $\{816\}$. v: Sears' Synthetic IPSR1190903.
Per-D2\{118\}. 2DS\{118\}. v: CS.
Per-H2\{118\}. [Per-5\{095\}]. 2H\{118\}. ad: CS/Betzes.
Per-R2\{118\}. 2RS\{118\}. ad: CS/Imperial; Kharkov/Dakold.

74.2.13.3. PER-3

PER-3 is expressed in embryo $\{119,816\}$ and scuteller $\{119\}$ tissues.
Per-A3\{119\}. 3AL\{119\}. v: CS.
Per-A3a\{816\}. v: CS.
Per-A3b\{816\}. v: Timstein.
Per-A3c\{816\}. v: Hobbit 'S'.
Per-B3\{086\},\{119\}. [Per4\{961\}]. 3BL\{086,119\}. v: CS.
Per-B3a\{816\}. v: CS.
Per-B3b\{816\}. v: Hope.
Per-B3c\{816\}. v: T. macha IPSR1240005.
Per-B3d\{816\}. v: Timstein.
Per-B3e\{816\}. v: Sears' Synthetic IPSR1190903.
Per-D3\{086\},\{119\}. [Per5\{961\}]. 3DL\{086,119\}. v: CS.
Per-D3a\{816\}. v: CS.
Per-D3b\{816\}. v: Hope.
Per-D3c\{816\}. v: Timstein.
Per-D3d\{816\}. v: T. macha IPSR 142005.
Per-D3e\{816\}. v: Sava.
Per-D3f\{816\}. v: Cheyenne.
Per-D3g\{816\}. v: Sears' Synthetic IPSR 1190903.
Varietal variation for Per-3 was reported in $\{094\}$.

74.2.13.4. PER-4

PER-4 is expressed in endosperm tissue $\{086,119\}$.
Per-A4\{695\},\{119\}. [Per3\{961\}]. 7A\{695\}.7AS\{694,086,119\}. v: CS.
Per-A4a\{816\}. v: CS.
Per-A4b\{816\}. v: Hope.
Per-A4c\{816\}. v: Sicco.
Per-B4\{695\},\{119\}. [Per2\{961\}]. 4A\{695\}.4AL\{086,119,694\}. v: CS.
Per-B4a\{816\}. v: CS.
Per-B4b\{816\}. v: Hope.
Per-B4c\{816\}. v: Thatcher.
Per-D4\{695\},\{119\}. [Per1\{961\}]. 7D\{695\}.7DS\{694,086,119\}. v: CS.
Per-D4a\{816\}. v: CS.
Per-D4b\{816\}. v: Thatcher.
Per-Age ${ }^{e}$. $7 \mathrm{Ag}^{\mathrm{e}} \mathrm{S}\{694\}$. tr: Certain CS 7D/Ag ${ }^{e}$ lines.
Per-Ag ${ }^{i}$. [Per- $\left.\operatorname{Ag}^{i} 3\{374\}\right]$. $7 \mathrm{Ag}^{\mathrm{i}}\{168\}$. ad: Vilmorin 27/Thin. intermedium.
Cultivar variation for Per-4 was reported in $\{094\}$.

74.2.13.5. PER-5

PER-5 is expressed in roots $\{816\}$.
Per-D5\{816\}. 2DS\{816\}. v: CS.
Per- $\boldsymbol{S}^{1} 5\{816\}$. $2 S^{1}\{816\}$. ad: CS/Ae. longissima.

74.2.14. Phosphodiesterase

Pde-A1. [Pde-A3\{1590\}]. 3A\{1590\}.3AS\{1589\}. v: CS.
Pde-B1. [Pde-B3\{1590\}]. 3B\{1590\}.3BS\{1589\}. v: CS.
Pde-D1. [Pde-D3\{1590\}]. 3DS\{1590\}. v: CS.
Pde-S ${ }^{l}$. $3 S^{l} \mathrm{~S}\{172\}$. ad: CS/Ae. longissima.
Pde-V1\{1518\}. 3VS\{1518\}. ad: CS/D. villosum.

74.2.15. Phosphogluconate dehydrogenase

Pgd1\{282\}. [Pgd3\{282\},Pgd-A3\{963\}]. 7A ${ }^{\mathrm{m}} \mathrm{S}\{282\}$. v: T. monococcum\{664\}.
PgdR1. 4RL\{1191\}. ad: CS/Imperial; Holdfast/King II.
PgdR2. 6RL\{1191\}. ad: CS/Imperial; Holdfast/King II.
Loci were also identified in 6B \{1435\}, 1EL \{1435\}, 1HL \{147,1072\}, $1 \mathrm{H}^{\text {ch }}\{352\}$ and 1RL \{779\}.

74.2.16. Phosphoglucomutase

Pgm-A1 $\{088\}$. [Рgm-B1\{088\}]. 4AL\{088\}. v: CS.
Pgm-D1\{088\}. 4DS\{088\}. v: CS.
Pgm-Ag1 1 i361\},\{374\}. [Pgm-X1\{361\}]. 4Ag ${ }^{\mathrm{i}}\{361\}$. ad: Vilmorin 27/Thin. intermedium.
Pgm-H1. [Pgm-b1\{090\}]. 4H\{090\}. ad: CS/ Betzes.
Pgm- $\boldsymbol{H}^{\text {ch }} \mathbf{1}\{351\}$. $4 \mathrm{H}^{\text {ch }}\{351\}$. ad: MA/H. chilense.
Pgm-R1. 4RS\{1561,1253\}. ad: CS/Imperial 4RS\{1253,1561\}; Kharkov/Dakold 4R\{1253\}; Holdfast/King II 4RS $\{1253,1561\}$.

74.2.17. Shikimate dehydrogenase

Skdh-A1\{706,1065\}. 5AS $\{706,1065\}$. v: CS.
Skdh-B1\{706,1065\}. 5BS\{706,1065\}. v: CS.
Skdh-D1\{706,1065\}. 5DS\{706,1065\}. v: CS.
Skdh-H1\{085\}. 5H\{085\}. ad: CS/Betzes.
Skdh- $\boldsymbol{H}^{\mathbf{t}} \mathbf{1}\{1037\} .5 \mathrm{H}^{\mathrm{t}}\{1037\}$. ad: CS/E. trachycaulus.

Skdh-R1\{706\}. 5RS\{706\}.5R\{085\}. ad: CS/King II\{085\}; CS/Imperial\{706\};
Kharkov/Dakold\{085\}. tr: CS 4AS-5RL; CS 5BL-5RL.
Skdh-S ${ }^{\boldsymbol{l}} \mathbf{1}\{085\}$. $5 S^{l} \mathrm{~S}\{085\}$. ad: CS/Ae. longissima.
Skdh- $\boldsymbol{S}^{\mathbf{s}} \mathbf{1}\{1140\}$. $5 S^{\mathrm{s}}\{1140\}$. ad: CS/Ae. searsii.
Skdh-V1\{085\}. 5V\{085\}. ad: CS/D. villosum.
Skdh-U1. 5U\{706\}. ad,su: CS/Ae. umbellulata.

74.2.18. Superoxide dismutase

Sod-A1\{1066\}. 2AL\{1066\}. v: CS.
Sod-B1\{1066\}. 2BL\{1066\}. v: CS.
Sod-D1\{1066\}. 2DL\{1066\}. v: CS.
Sod-E1\{808\}. VI E\{808\}. ad: CS/E. elongata.
Sod-H1\{716\}. 2H\{716\}. ad: CS/Betzes.
Sod-R1\{1066\}. [Sod-3\{586\}]. 2R\{1066\}. ad: CS/Imperial.
Sod-S $\boldsymbol{S}^{\boldsymbol{s}} 1\{1140\}$. $2 S^{S}\{1140\}$. ad: CS/Ae. searsii.
Sod-VI\{1026\}. 7V\{1026\}. ad: CS/D. villosum.

74.2.19. Triosephosphate isomerase

```
Tpi-A1{1139}. 3AS{1139}. v: CS.
Tpi-B1{1139}. 3BS{1139}. v: CS.
Tpi-D1{1139}. 3DS{1139}. v: CS.
Tpi-E1{1139}. 3E{1139}. ad: CS/E. elongata.
Tpi-H1{1139}. 3H{1139}. ad: CS/Betzes.
Tpi-R1{1139}. 3R{1139}. ad: CS/Imperial; Kharkov/Dakold.
Tpi-Sl1{1139}. 3S'1 {1139}. ad: CS/ Ae. longissima.
Tpi-A2{1139}. 5AL{1139}. v: CS.
Tpi-B2{1139}. 5BL{1139}. v: CS.
Tpi-D2{1139}. 5DL{1139}. v: CS.
Tpi-H2{1139}. 5H{1139}. ad: CS/Betzes.
Tpi-R2{1139}. 5R{1139}. ad: CS/Imperial; Kharkov/Dakold.
Tpi-S'2{1139}. 5S'l}{1139}. ad: CS/Ae. longissima
Tpi-U2{1139}. 5U{1139}. ad: CS/Ae. umbellulata.
Tpi-Ag}\mp@subsup{\boldsymbol{g}}{}{\mathbf{i}}2374}.5\mp@subsup{Agg}{}{i}{374}. ad: Vilmorin 27/Ag. intermedium
```


74.2.20. Aromatic alcohol dehydrogenase

Aadh-A1. [Adh-A2\{584\}]. 5AL\{584\}. v: CS. ma: XksuG44-5A(proximal) - 6.9cM - Aadh-A1-24.7cM - Xcdo412-5A(distal)\{9959\}.
Aadh-A1a. v: CS; 133 other accessions\{584\}.
Aadh-A1b. v: T. spelta; K-24696; other accessions\{584\}.

Aadh-B1. [Adh-B2\{584\}]. 5BL\{584\}. v: CS. Aadh-B1a. v: CS\{1533\}. Aadh-B1b. v: Drina $\{1533\}$.
Aadh-C1\{1278\}. C\{1278\}. ad: Alcedo/Ae. caudata line C.
Aadh-D1. [Adh-D2\{584\}]. 5DL\{584\}. v: CS.
Aadh-E1. [Adh-E2\{518\}]. 5EL\{518\}. ad: CS/E. elongata.
Aadh-R1. 5RL\{1280\}. ad: Holdfast/King II.
Aadh-A2. [Adh-A3\{508\}]. 6A\{1279\}.6AL\{513,587\}. v: CS\{513\}; Carola\{1279\}.
Aadh-B2. [Adh-B3\{508\}]. 6B\{1279\}.6BL\{513\}. v: CS\{513\}; Carola\{1279\}.
Aadh-D2. [Adh-D3\{508\}]. 6D\{1279\}.6DL\{513\}. v: CS\{513\}; Carola\{1279\}.
Aadh- $\boldsymbol{A g}^{e} \mathbf{2}\{1575\}$. $6 \mathrm{Ag}^{\mathrm{e}}\{1575\}$. ad,su: Rescue/Thin. elongatum.
Aadh-E2. [Adh-E3\{518\}]. 6EBeta\{518\}. ad: CS/E. elongata.
Aadh-R2. 6RL\{1280\}. ad: Holdfast/King II.
Aadh-V2\{241\}. 6V\{241\}. ad: CS/D. villosum.
The Aadh-1 and Aadh-2 loci were designated with the synonyms Adh-2 and Adh-3, respectively, in a number of publications in addition to $\{508,518,584\}$. These include: $\{510,509,511,519,517,587,1066,1139\}$.

74.2.21. Aconitase

Aco-A1\{189\}. 6AL\{189\}. v: CS.
Aco-A1a. v: CS\{1533\}.
Aco-A1b. v: Dubravka\{1533\}.
Aco-B1\{189\}. 6BL\{189\}. v: CS. Aco-B1a. v: CS\{1533\}. Aco-B1b. v: Dubravka\{1533\}. Aco-B1c. v: Slavonka\{1533\}.
Aco-D1\{189\}. 6DL\{189\}. v: CS.
Further alleles at Aco-A1 and Aco-B1 are listed in \{1127\}; these have not been tested against those found in $\{1533\}$.
Aco- $\boldsymbol{A g}^{e} \mathbf{1}\{1575\}$. $6 \mathrm{Ag}^{\mathrm{e}}\{1575\}$. ad,su: Rescue/Thin. elongatum.
Aco-E1\{189\}. 6Ebeta\{189\}. ad: CS/E. elongata.
Aco-H1\{147\},\{189\}. [Aco-1\{147\}]. 6H\{147\}.6HL\{189\}. ad: CS/Betzes.
Aco-R1\{189\}. 6RL\{189\}. ad: Sturdy/PI 252003.
Aco- $\mathbf{S}^{1} 1$ \{189\}. $6 \mathrm{~S}^{1}\{189\}$. ad: CS/Ae. longissima.
Aco- $\boldsymbol{S}^{\boldsymbol{s}} \mathbf{1}\{1140\}$. $6 \mathrm{~S}^{\mathbf{s}}\{1140\}$. ad: CS/Ae. searsii.
Aco-U1\{189\}. CSU-31\{189\}. ad: CS/Ae. umbellulata.
Aco-A2\{189\}. 5AL\{189\}. v: CS.
Aco-B2\{189\}. 4BL\{1513\}. v: CS.
Aco-B2a\{1513\}. v: CS.
Aco-B2b\{1513\}. v: PI 278437.
Aco-B2c\{1513\}. v: PI 182575.
Aco-B2d\{1513\}. v: PI 157589.
Aco-D2\{189\}. 4DL\{1513\}. v: CS.
Aco-E2\{189\}. 4EL\{189\}. ad: CS/E. elongata.
Aco- $M^{v} 2\{1341\}$. [Aco-M $\left.2\{985\}\right]$. $5 M^{v}$. ad: $5 \mathrm{M}^{\mathrm{v}}(5 \mathrm{~A}), 5 \mathrm{M}^{\mathrm{v}}(5 \mathrm{D})$.
Aco-R2\{189\}. 5RL\{189\}. ad: CS/King II 5R; Holdfast/ King II 5RL.
Aco-S $\mathbf{S}^{s} 2\{1140\} .4 S^{s}\{1140\}$. ad: CS/Ae. searsii.

74.2.22.1. Ndh-1

Ndh-A1\{513\},\{1037\}. [Ndh-B1\{513\}]. 4AL\{513\}. v: CS.
Ndh-A1a\{1533\}. [Ndh-B1a\{936\}]. v: CS.
Ndh-A1b\{1533\}. [Ndh-B1b\{936\}]. v: Sutjeska.
Ndh-A1c\{1533\}. [Ndh-B1c\{936\}]. v: Fruskogorka.
Ndh-A1d\{1037\}. [Ndh-A1b\{1037\}]. v: Hope, Timgalen.
Ndh-B1\{513\}. [Ndh-A1\{513\}]. 4BS\{513\}. v: CS.
Ndh-D1\{513\}. 4DS\{513\}. v: CS.
Ndh-E1\{362\}. 4E\{362\}. ad: CS/Ag. elongatum.
Ndh-H1\{147\},\{513\}. [Nadhd-1\{147\}]. 4H\{147\}.4HS\{813\}. ad: CS/Betzes.
$N d \boldsymbol{h}-\boldsymbol{H}^{\text {ch }} \mathbf{1}\{813\} .4 \mathrm{H}^{\text {ch }}\{813\}$. ad: CS/H. chilense.
Ndh-V1\{241\}. 4V\{241\}. ad: CS/D. villosum.
Ndh-R1\{813\}. 4R\{362\}.4RS\{813\}. ad: CS/Imperial, CS/King II\{813,362\}; CS/Dakold\{362\}.
Ndh- $\mathbf{S}^{1} 1\{813\} . \mathrm{AS}^{1}\{813\}$. ad: CS/Ae. longissima.
Ndh-U1\{362\}. A\{362\}. ad: CS/Ae. umbellulata.
Based on the correspondence of the electrophoretic patterns, isoelectric points (pIs) and chromosomal location, it was proposed that the Ndh1 (NADH dehydrogenase) and Dia3 (diaphorase) represent the same locus $\{0356\}$.

74.2.22.2. Ndh-2

Ndh-A2\{813\}. 7A\{813\}. v: Hope.
Ndh-D2\{813\}. 7DS\{813\}. v: CS.
Ndh-R2\{813\}. 7RS \{813\}. ad: CS/Imperial, CS/King II, Holdfast/King II (7R).
Based on the correspondence of the electrophoretic patterns, isoelectric points (pIs) and chromosomal location, it was proposed that the Ndh-2 (NADH dehydrogenase) and Dia2 (diaphorase) represent the same locus $\{0356\}$.

74.2.22.3. Ndh-3

Ndh-A3\{813\}. 3AL\{813\}. v: CS.
Ndh-B3\{813\}. 3BL\{813\}. v: CS.
Ndh-B3a\{813\}. v: CS.
Ndh-B3b\{813\}. v: Carmen.
Ndh-D3\{813\}. 3DL\{813\}. v: CS.
Ndh-H3\{813\}. 3HL $\{813\}$. ad: CS/Betzes.
Ndh-R3\{813\}. 6RL\{813\}. ad: Holdfast/King II, CS/Imperial (6R), CS/King II (6R).
Ndh-S $\mathbf{S}^{\boldsymbol{3}}\{813\}$. $3^{1} \mathrm{~L}\{813\}$. ad: CS/Ae. longissima; CS/Ae. sharonesis ($3 \mathrm{~S}^{1}$).
Based on the correspondenc of the electrophoretic patterns, isoelectric points (pIs) and chromosomal location, it was proposed that the Ndh-3 (NADH dehydrogenase), Dia1 (diaphorase) and Mnr1 (menadione reductase) represent the same locus $\{0356\}$.

74.2.22.4. Ndh-4

Ndh-A4\{813\}. 3AS\{813\}. v: CS.
Ndh-B4\{813\}. 3BS\{813\}. v: CS.
Ndh-E4\{813\}. 3ES\{813\}. ad: CS/E. elongata.
Ndh-H4\{813\}. 3HS \{813\}. ad: CS/Betzes, CS/King II.
$\boldsymbol{N d h}-\boldsymbol{R 4}\{813\} .3 R S\{813\}$. ad: CS/King II, CS/Imperial (3R).

74.2.23. Dipeptidase

Dip-A1\{454\},\{700\}. [Pept-A1\{454\}]. 6AL\{454,700\}. v: CS.
Dip-A1a\{700\}. v: CS.
Dip-A1b\{700\}. v: Cheyenne.
Dip-B1\{454\},\{700\}. [Pept-B1\{1533\}]. 6BL\{454,700\}. v: CS.
Dip-B1a\{700\}. v: CS.
Dip-B1b\{700\}. v: Cappelle-Desprez.
Dip-D1\{700\}. 6DL\{700\}. v: CS.
Dip-H1 1147\},\{700\}. [Pept-1\{147\},Dip 1\{145\}]. 6H\{147,145,700\}. ad: CS/Betzes.
Dip-J1\{700\}. 6J\{700\}. ad: CS/Thin. junceum.
Dip-V1\{700\}. 6V\{700\}. ad: CS/D. villosum.

74.2.24. Malic enzyme

A dimeric enzyme extractable from mature grains.
Mal-A1\{809\}. 3AL. v: CS.
Mal-B1\{809\}. 3BL. v: CS.
Mal-B1a\{809\}. v: CS.
Mal-B1b\{809\}. v: T. spelta IPSR line 1.
Mal-B1c\{809\}. v: Sears' Synthetic.
Mal-D1\{809\}. 3DL. v: CS.
Mal-E1\{809\}. 3E. ad: CS/E. elongata.
Mal-H1\{809\}. 3H. ad: CS/Betzes.
Mal-R1\{809\}. 3R. ad: CS/Imperial.

74.2.25. Adenylate kinase

Adk-A1\{091\}. [Adk-a\{091\}]. 7AL\{091\}. v: CS.
Adk-B1\{091\}. [Adk-b\{091\}]. 7BL\{091\}. v: CS.
Adk-D1\{091\}. [Adk-d\{091\}]. 7DL\{091\}. v: CS.
Adk-E1\{091\}. 7E\{091\}.7E \{1435\}. ad: CS/E. elongata.
Adk-H1\{091\}. 7H\{091\}.7HS\{1435\}. ad: CS/Betzes.
Adk- $\boldsymbol{M}^{v} 1\{985\}$. [Adk-Mv1\{985\}]. $7 \mathrm{M}^{\mathrm{V}} \mathrm{L}$. su: $7 \mathrm{M}^{\mathrm{v}}(7 \mathrm{D})$.
Adk-R1\{091\}. 7RL\{091\}. ad: CS/Imperial; Holdfast/King II.
Adk-U1\{091\}. E\{091\}. ad: CS/Ae. umbellulata.
Adk- $\boldsymbol{A g}^{\boldsymbol{i}} \mathbf{I}\{091\}$. $7 \mathrm{Ag}^{\mathrm{i}}\{091\}$. ad: CS/Thin. intermedium.
Adk-H2. 6HL\{1435\}. ad: CS/Betzes.

74.2.26. Glutamate-pyruvate transaminase

Gpt-A1\{1435\}. 1AS\{1435\}. v: CS.
Gpt-B1\{1435\}. 1BS\{1435\}. v: CS.
Gpt-D1\{1435\}. 1DS\{1435\}. v: CS.
Gpt-E1\{1435\}. 1ES\{1435\}. ad: CS/E. elongata 1E.
Gpt-H1\{1435\}. 1H\{1435\}. dv: H. vulgare cv. Betzes.

74.2.27. Catalase

Cat-B1\{1466\}. [Cat-A1\{1466\}]. 4BL\{1466\}. v: CS.

74.2.28. Beta-glucosidase
b-Gls\{282\}. 2A ${ }^{\mathrm{m}} \mathrm{L}\{282\}$. dv: DV92.
b-Glsa\{282\}. dv: DV92.
b-Glsb\{282\}.Null allele dv: G3116.

74.2.29. Starch branching enzyme

SbeI1 \{9937\}. 1DL\{9937\}. v: CS\{9937\}.
SbeI2\{9937\}. 7BL \{9937\}. v: CS $\{9937\}$.

74.3. Endosperm storage proteins

74.3.1. Glutenins

These are heterogeneous mixtures of proteins comprising subunits linked by disulfide bonds. ' A ' are high-molecular-weight (HMW) and ' B ', ' C ' and 'D' are low-molecular-weight (LMW) subunits.

Using proteomic analysis of 2D gels of seed storage proteins in 39 ditelocentric lines of cv. CS, 105 protein spots were resolved \{03129\}. Locations of structural genes controlling 26 spots were identified in 10 chromosomal arms (4 on 1BL, 5 on 1BS, 4 on 1DL, 4 on 1DS, 2 on 6AS, 3 on 6 BS , 1 on $6 \mathrm{DL}, 1$ on $6 \mathrm{DS}, 1$ on 3 BS and 1 on 3BL). Multiple regulators of the same protein located on various chromosome arms were observed. Two novel subunits, named 1 Bz and 1 BDz , were found to have very similar structures to HMW glutenin subunit 12 (encoded by Glu-D1-2a - see the relevant list below) and were located to chromosome arms 1BL and 1DL, respectively.

74.3.1.1. Glu-1

The Glu-1 loci, all of which are compound, encode HMW glutenin subunits.
Each Glu-1 locus in hexaploid wheat contains two genes, the products of which were described as 'x-type' and 'y-type' based on differences in molecular weight and isoelectric point $\{1118\}$.
Other evidence has shown that these gene products differ in electrophoretic fingerprint pattern $\{1124\}$ and cysteine content $\{1028\}$, and the genes themselves differ in nucleotide sequence $\{1470,1433,373\}$.
Although early evidence suggested up to 6 genes in total at each locus \{1471,373], it appears likely that only a single copy of each gene is present at the 1AL, 1BL, and 1DL loci $\{495\}$. No 'y-type' protein from the Glu-A1 locus has been demonstrated in hexaploid wheat \{1118\}, although they are found in diploid wheats $\{1535,798\}$, and sequencing experiments have shown the presence of a terminating sequence inside the transcribed portion of the gene $\{373\}$. Definitive evidence that subunit 21^{*} \{602\}, which has a mobility close to that of subunit 21, is a 'x-type' protein rather than a 'y-type' protein has not been obtained. The gene coding for 'x-type' proteins within Glu-A1 is also often silent $\{1118,420\}$.
The symbols for the genes within the Glu-1 loci coding for 'x-type' and 'y-type' proteins will be Glu-1-1 and Glu-1-2, respectively, rather than Glu-1x and Glu-1y \{1470\}. The genes are closely linked but recombination has been observed between Glu-B1-1 and Glu-B1-2 with a frequency of 3 in $3,450\{1117\}$. The gene order, relative to the centromere, has not been ascertained.
The subunit nomenclature used is that devised in $\{1116\}$; however, an alternative system
based upon molecular weight was proposed in \{1068\}. A system of naming the Glu-A1-1, Glu-A1-2, Glu-B1-1 and Glu-B1-2 alleles in T. turgidum var. dicoccoides is given in \{796\}.

In $\{00116\}$, a comparison between spelt wheats (T. spelta) and bread wheat was carried out for the glutenins using a nomenclature system described in $\{00117\}$.
The Glu-1 loci may be recognised by the DNA probe pTag1290 \{1471\} and probe pwhe1(Dy10) $\{\{030\}$. Individual Glu-1-1 loci on 1A, 1B and 1D and the Glu-1-2 loci may be recognised by specific primers $\{263\}$.
In $\{00105\}$, the evolution of the high molecular weight glutenin loci of the A, B, D and G genomes of wheat was explored; 30 partial allele sequences were compared, designated by Greek letters (alpha, beta, gammma, etc.) (5 of which were cited as Schlumbaum, pers. comm.; the remaining 25 were deposited as GenBank, accession nos. X98583-X98592, X98711-X98715 and Y12401-Y12410). These partial alleles derive from all six Glu-1-1 and Glu-1-2 loci in current-day samples taken from seven species of wheat, as well as from DNA extracted from charred grain of two samples from archaeological excavations, dated 3000 and 5000 years old, respectively.

Following the first listing which considers the Glu-1 set for hexaploid wheat as a single locus, there is a provisional listing based on x - and y - type glutenins. These are not referenced.

The importance of the HMW glutenin subunits for bread-making quality was first noted from observations in wheat cultivars of related pedigree on the effects of the presence of subunit 1 encoded by Glu-A1a \{0197\}, effects that have repeatedly been confirmed since (for example \{0198,0199,01100\}).

A nomenclature system for prolamin banding patterns of triticale was proposed in \{03139\}. Extensive allelic variation in triticale at Glu-A1, Glu-B1, Glu-R1 and Gli-R2 loci was reported in $\{03121\}$.
Glu-A1\{780,1125\}. [Glt-A1\{420\},Glt-A2\{420\},Glu 1A\{1415\}]. 1A\{780\}.1AL\{781,1125\}.
s: CS*/Hope 1A\{1125\}. v: CS\{780,781\}; various 420$\}$.
Glu-A1a\{1116\}. 1\{1116\}. v: Hope.
Glu-A1b $\{1116\} .2^{*}\{1116\}$. v: Bezostaya 1.
Glu-A1c $\{1116\}$. Null allele\{1116\}. v: CS.
Glu-A1d\{1535\}. v: V74, Spain\{1115\}.
Glu-A1e\{1535\}. v: 132c, Poland\{1115\}.
Glu-A1f\{1535\}. v: 112-29, Sudan\{1115\}.
Glu-A1g\{1535\}. v: Landrace 1600.
Glu-A1h\{1527\}. [GLU-A1-I\{1527\}]. tv: PI 94683, USSR, T. dicoccum.
Glu-A1i\{1527\}. [GLU-A1-II\{1527\}]. tv: CI 12213, India, T. dicoccum; Lambro\{1523\}.
Glu-A1j\{1527\}. [GLU-A1-III\{1527\}]. 1'\{125\}. tv: PI 352359, Germany, T. dicoccum.
Glu-A1k\{478\}. 26\{478\}. v: BT-2288\{478\}.
Glu-A1I\{847\}. tv: Chinook, Canada.
Glu-A1m\{1069\}. tv: Nugget Biotype 1, Canada, T. durum.
Glu-A1n\{1526\}. [Glu A1-IV\{1526\},Glu-A1m\{959\}]. 1'\{125\}. tv: Corado, Portugal\{1526\}.
Glu-A1o\{1526,125\}. [Glu A1-V\{1526,125\},Glu-A1n\{959\}]. $2^{* *}\{125\}$. tv: Aric 581/1\{125\}; PI 61189\{1525\}; USSR.
Glu-A1p $\{1146\} .3^{*}\{1146\}$. v: David 1.
Glu-A1q\{125\}. [Glu A1VI\{125\}]. $2^{* * *}\{125\}$. tv: Melianopus 1528.
Glu-A1r\{1232\}. 39+40\{1232\}. i: T. thaoudar IPSR 1020006/6*Sicco.
Glu-A1s\{1231\}. 41+42\{1231\}. i: T. thaoudar G3152/6*Sicco.

Glu-A1u\{02106\}. $2^{* B}\{02106\}$. v: Bankuti 1201 .
The allele designated Glu-A1u and Glu-A1-1u in the appropriate list below encodes a high molecular weight glutenin subunit (denominated $2^{* B}$) that is identical to subunit 2^{*} apart from one amino acid difference involving the exchange of serine for cysteine (which itself is due to a C to G point mutation at the 1181 bp point of the coding region of 2^{*}). The authors of $\{02106\}$ suggest that the additional cysteine residue facilitates the formation of further disulphide bonds (cf. the 1Dx5 subunit) which might lead to an improvement in gluten quality characters.
Glu-A1v\{03137\}. [Glu-A1-VII\{03137\}]. VII\{03137\}. v: PI-308879 emmer \{03137\}. There is a possibility that Glu-A1 alleles $i, j\{1527\}$ and $k\{478\}$ correspond to alleles d, e, f or $g\{1535\}$ that were published shortly earlier. Glu-A1m [\{1526\}] was changed to n, because the m allele in $\{1069\}$ has precedence. Allele $n[\{1526\}]$ was changed to o. An earlier reference to an allele designated Glu-A1d \{1411\} was withdrawn \{1114\}. There appears to be a minor band associated with subunit 2^{*} encoded by Glu-A1b \{1516\}; this may be the same as a band named A5 in $\{420\}$.
Six combinations involving 5 HMW subunits [1A (u-z)] are listed in \{420\}, from a study of 109 genotypes including representatives of botanical varieties. A number of alleles in T. turgidum var. dicoccoides populations, 12 at Glu-A1-1 and 3 at Glu-A1-2, were described in $\{798\}$. In a further study using different germplasm of this species $\{205\}, 14$ alleles at Glu-A1 were observed, including 12 not previously found; the 15 alleles included up to 15 alleles at Glu-A1-1 (with up to 10 not previously observed), and 5 alleles at Glu-A1-2 (with 4 not previously observed) (numbers take the null allele into account). The uncertainty in numbers is due to the very similar electrophoretic mobilities of some of the subunits compared with others observed either in this study or previously. In a study including emmers (T. dicoccon) $\{00115\}$, new subunits named 1^{+}and 2^{-}were found in accessions MG4378/1 and MG5380/1, respectively, and provisionally assigned to Glu-A1. Until confirmed, they are not included in the Glu-A1 list.
Glu-B1\{107\},\{1125\}. [Glt-B1\{420\},Glt-B2\{420\},Glt-B3\{420\},Glu 1B\{1415\}].
1BL $\{107,780,1125\}$. v: CS.
Glu-B1a\{1116\}. 7\{1116\}. v: Flinor.
Glu-B1b\{1116\}. 7+8\{1116\}. v: CS.
Glu-B1c\{1116\}. 7+9\{1116\}. v: Bezostaya 1.
Glu-B1d\{1116\}. 6+8\{1116\}. v: Hope.
Glu-B1e\{1116\}. 20\{1116\}.20x+20y\{03133\}. v: Federation.
Glu-B1f\{1116\}. 13+16\{1116\}. v: Lancota (rare).
Glu-B1g\{1116\}. 13+19\{1116\}. v: NS 335 (rare).
Glu-B1h\{1116\}. 14+15\{1116\}. v: Sappo (rare).
Glu-B1i\{1116\}. 17+18\{1116\}. v: Gabo.
Glu-B1j\{1116\}. $21\{1116\} .21 \mathrm{x}+21 \mathrm{y}\{03116\}$. v: Dunav (rare); Foison\{03116\}.
Glu-B1k\{1116\}. 22\{1116\}. v: Serbian (rare).
Glu-B1I\{778\}. 23+24\{778\}. v: Spica D.
Glu-B1m\{1527\}. [GLU-B1-I\{1527\}]. tv: PI 94640, Iran, T. dicoccum.
Glu-B1n\{1527\}. [GLU-B1-II\{1527\}]. tv: PI 355505, Germany, T. dicoccum.
Glu-B1o\{1527\}. [GLU-B1-III\{1527\}]. tv: PI 352354, Ethiopia, T. dicoccum.
Glu-B1p\{1527\}. [GLU-B1-IV\{1527\}]. 23+18\{125\}. tv: Dritto\{1523\}; Ethiopia, PI 94655, T. dicoccum $\{1527\}$.
Glu-B1q\{1527\}. [GLU-B1-V\{1527\}]. tv: PI 94633, Morocco, T. dicoccum.
Glu-B1r\{1527\}. [GLU-B1-VI\{1527\}]. 19\{125\}. tv: PI 946669, Bulgaria, T. dicoccum $\{1527\}$; Lambro\{1523\}.
Glu-B1s $\{478\}$. 7+11\{478\}. v: BT-2288.

Glu-B1t\{847\}. v: Supreza, Canada.
Glu-B1u\{1069\}. $7^{*}+8\{1146\}$. v: Owens\{1069\}; Fiorello\{1146\}.
Glu-B1v\{1069\}. v: Mondor.
Glu-B1w\{1069\}. $6^{*}+8^{*}\{1146\}$. v: Dawbull\{1069\}; Sieve\{1146\}.
Glu-B1x\{1526\}. [Glu-B1-VII\{1526\},Glu-B1t\{959\}]. tv: Canoco de Grao Escuro, Portugal, T. turgidum.
Glu-B1y\{1526\}. [Glu-B1-VIII\{1526\},Glu-B1u\{959\}]. tv: Tremez Mollez, Portugal, T. durum.
Glu-B1z\{1524\}. [Glu-B1-IX\{1524\},Glu-B1v\{959\}]. 7+15\{125\}. tv: Roccia, Italy, T. durum \{1523,125\}.
Glu-B1aa\{1524\}. [Glu-B1-X\{1524\},Glu-B1w\{959\}]. tv: Quaduro, Italy, T. durum.
Glu-B1ab\{1523\}. [Glu-B1-XI\{1523\},Glu-B1x\{959\}]. tv: Athena, Italy, T. durum.
Glu-B1ac\{125\}. [Glu B1XIII\{125\}]. 6+16\{125\}. tv: Espa 18914, T. durum.
Glu-B1ad\{125\}. [Glu B1XIV\{125\}]. 23+22\{125\}. tv: Greece 20, T. durum.
Glu-B1ae\{1146\}. $18^{*}\{1146\}$. v: David.
Glu-B1af\{1146\}. 26+27\{1146\}. v: Cologna 1.
Glu-B1ag\{1146\}. 28+29\{1146\}. v: Forlani.
Glu-B1ah\{782\}. null allele\{782\}. v: Olympic mutant.
Glu-B1ai\{714\}. 7'\{714\}. v: Adonis.
Glu-B1aj\{759\}. 8\{759\}. v: AUS 14444, Afghanistan.
Glu-B1ak\{899\}. $7^{*}+8^{*}\{899\}$. v: Norstar.
Glu-B1al\{899\}. 7+8* $\{899\}$. v: Glenlea.
Glu-B1am\{1229\}. 18\{1229\}. v: Royo.
Glu-B1an\{1229\}. 6\{1229\}. v: BG-2013.
Glu-B1ao\{1229\}. 7+16\{1229\}. v: BG-3545.
Glu-B1ap 1229$\}$. 30+31\{1229\}. v: Marinar.
Glu-B1aq\{1229\}. 32+33\{1229\}. v: BG-1943.
Glu-B1ar\{1229\}. 34+35\{1229\}. v: Jeja Almendros.
Glu-B1as\{1229\}. 13\{1229\}. v: PI 348435.
Glu-B1at $\{1229\} .13+18\{1229\}$. v: PI 348449.
Glu-B1au\{1032\}. 37\{1032\}. v: Shedraya Polesja.
Glu-B1av\{03116\}. [Glu-B1r\{03116\}]. 7-18\{03116\}. v: Triticor hexaploid triticale\{03116\}.
Glu-B1aw\{03116\}. [Glu-B1s\{03116\}]. 6.8-20y\{03116\}. v: Carnac hexaploid triticale\{03116\}.
Glu-B1ax\{03137\}. [Glu-B1-XV\{03137\}]. XV\{03137\}. tv: PI-190922, BG-012302 emmers\{03137\}.
Glu-B1ay\{03137\}. [Glu-B1-XVI\{03137\}]. XVI\{03137\}. tv: PI-277681 emmers\{03137\}.
Glu-B1az\{03137\}. [Glu-B1-XVII\{03137\}]. XVII\{03137\}. tv: PI-348620 emmers\{03137\}.
Glu-B1ba\{03122\}. [Glu-B1-XVIII\{03122\}]. $13^{*}+16\{03122\}$. v: PI-348767 spelt \{03122\}.
Glu-B1bb $\{03122\}$. [Glu-B1-XLX\{03122\}]. 6+18'\{03122\}. v: PI-348631 spelt wheat accession\{03122\}.
Glu-B1bc\{03138\}. 6+17\{03138\}. v: ICDW 20975\{03138\}.
Glu-B1bd\{03140\}. 20+8\{03140\}. v: Abadja\{03140\}.
The alleles formerly designated t to x in $\{959\}$ were renamed x to $a b$ because allele t in $\{847\}$ and alleles u, v and w in $\{1069\}$ had precedence. Subunit 8 of $G l u-B 1 b(7+8)$ is more acidic in isoelectric focusing than subunit 8 of Glu-B1d (6+8) \{555\}. Variation in the mobility of subunits designated 7 has been observed $\{1118\}$, which accords with more recent observations $\{714,1069\}$. The subunit encoded by Glu-B1v $\{1069\}$ has the
same mobility as subunit 7 of Glu-B1c (7+9); it could be the same subunit as 7' encoded by Glu-B1ai [\{714\}].
Variation in the staining intensity of subunit 7 in different lines was observed \{1069\}; a duplication of the gene encoding subunit 7 probably occurred in cultivar 'Red River 68', as evidenced by increased intensity of the subunit in SDS-PAGE and by approximately doubled intensity of restriction fragments carrying the gene in Southern blotting \{9989\}. Possible low gene expression at Glu-B1 was noted for Glu-B1w, where subunits $6^{*}+8^{*}$ stain very faintly $\{1146\}$.
One of the Glu-B1af subunits was numbered 26 in \{1146\}; 26 was previously used to number the subunit encoded by Glu-A1k \{478\}. Subunit 28 of Glu-B1ag (28+29) \{1146\} is referred to as subunit 19^{*} in $\{1068\}$. Subunit 23 of Glu-B1p \{23+18\} and Glu-B1ad (23+22) $\{125\}$ may not be the same subunit as that numbered 23 of Glu-B1l \{23+24\} \{778\}. Glu-Blz carried by Roccia was numbered (7+15) and named Glu-B1-XII in \{125\}; however, the earlier name, Glu-B1-IX \{1523\}, has precedence; also, \{1523\} states that the Glu-B1-IX subunit of faster mobility is slightly slower than subunit 15 . Subunit 11 of Glu-B1s $\{7+11\}$ was so numbered in $\{478\}$ because its mobility is the same as one of the subunits encoded by a Glu-D1 allele (2+11) described in $\{755\}$.
Eight alleles at Glu-B1-1 and 10 alleles at Glu-B1-2 in T. turgidum var. dicoccoides populations were described in $\{798\}$. In a further study using different germplasm of this species \{205\}, 19 alleles at Glu-B1 were observed, including 15 not previously observed; the 19 alleles included 11 alleles at Glu-B1-1 and 14 alleles (including the null allele) at Glu-B1-2, although, as the authors pointed out, it was not conclusively clear how many of these alleles were distinct from each other, or from others previously observed.
In a study including emmer wheats (T. dicoccon) \{00115\}, new subunits named 7^{+}(in accessions MG5400/5 and MG30835/1), 8^{-8} (in accessions MG5400/5, MG30835/1, MG5333/1 and MG5507) and 13^{-}(in accession MG5282/2) were found and provisionally assigned to Glu-B1. Until confirmed, they are not included in the Glu-B1 list.
Glu-D1\{1100,1125\}. [Glt-D1\{420\},Glt-D2\{420\},Glu 1D\{1415\}].
1DL $\{107,150,780,1100,1125\}$. v: CS.
Glu-D1a\{1116\}. 2+12\{1116\}. v: CS.
Glu-D1b\{1116\}. $3+12\{1116\}$. v: Hobbit.
Glu-D1c\{1116\}. $4+12\{1116\}$. v: Champlein.
Glu-D1d\{1116\}. 5+10\{1116\}. v: Hope.
Glu-D1e\{1116\}. $2+10\{1116\}$. v: Flinor (rare).
Glu-D1f\{1116\}. 2.2+12\{1116\}. v: Danchi (rare).
Glu-D1g\{478\}. 5+9\{478\}. v: BT-2288.
Glu-D1h\{1145\}. 5+12\{1145\}. v: Fiorello, Italy.
Glu-D1i\{107\}. null\{107\}. v: Nap Hal, Nepal.
Glu-D1j\{1146\}. $2+12^{*}\{1146\}$. v: Tudest.
Glu-D1k\{421\}. 2\{421\}. s: CS/Timstein 1D.
Glu-D11\{759\}. 12\{759\}. v: AUS 10037, Afghanistan.
Glu-D1m\{759\}. 10\{759\}. v: AUS 13673, Afghanistan.
Glu-D1n\{759\}. 2.1+10\{759\}. v: AUS 14653, Afghanistan.
Glu-D1o\{755\}. 2.1+13\{755\}. v: AUS 14519, T. macha.
Glu-D1p $\{1233\}$. $36\{1233\}$. i: Iranian landrace accession 3048/5* Sicco.
Glu-D1q\{124\}. 2+11\{124\}. v: Flinor.
Glu-D1r\{1229\}. 2.3+12\{1229\}. v: PI 348465.
Glu-D1s $\{1032\}$. $38\{1032\}$. v: Leningradka.
Glu-D1t\{668\}. 43+44\{668\}. i: Ae. tauschii accession TA2450/2*.
Glu-D1u\{836\}. 2+10'\{836\}. v: Coker 68-15.
Glu-D1v\{755\}. 2.1+10.1\{755\}. dv: Ae. tauschii.

Glu-D1w\{03124\}. $5^{*}+10\{03124\}$. v: Fiorello\{03124\}.
Glu-D1x\{755\}. 2+T2\{755\}. ${ }^{\mathrm{t}}+12.2^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii.
Glu-D1y\{755\}. 3+T2\{755\}. $3^{\mathrm{t}}+12.2^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii.
Glu-D1z\{755\}. 3+10\{755\}. dv: Ae. tauschii.
Glu-D1aa\{755\}. 3+10.3\{755\}. dv: Ae. tauschii.
Glu-D1ab\{755\}. 4.1+10\{755\}. dv: Ae. tauschii.
Glu-D1ac\{755\}. 4+10\{755\}. dv: Ae. tauschii.
Glu-D1ad\{755\}. 5.1+10.2\{755\}. dv: Ae. tauschii.
Glu-D1ae\{1578\}. 2.1+T2\{1578\}.2.1 ${ }^{\mathrm{t}}+12.2^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii.
Glu-D1ag\{1578\}. 1.5+T2\{1578\}.1.5 ${ }^{\mathrm{t}}+12.2^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii.
Glu-D1ah\{1578\}. 1.5+10\{1578\}. dv: Ae. tauschii.
Glu-D1ai\{1578\}. 2.1+10.5\{1578\}. dv: Ae. tauschii.
Glu-D1aj\{1578\}. 1.5+12\{1578\}. dv: Ae. tauschii.
Glu-D1ak\{1578\}. 3+10.5\{1578\}. dv: Ae. tauschii.
Glu-D1al\{02107\}. $2.2^{*}\{02107\}$. v: MG315.
Glu-D1am\{03122\}. [Glu-D1-I\{03122\}]. 2+12'\{03122\}. v: PI-348495 spelt $\{03122\}$.
Glu-D1an\{03122\}. [Glu-D1-II\{03122\}]. $2+12^{*}\{03122\}$. v: PI-348672 spelt $\{03122\}$.
Glu-D1ao\{03122\}. [Glu-D1-III\{03122\}]. 2.4+12\{03122\}. v: PI-348473 spelt $\{03122\}$.
Glu-D1ap $\{03122\}$. [Glu-D1-IV\{03122\}]. 2.5+12\{03122\}. v: PI-348572 spelt $\{03122\}$.
Glu-D1aq\{03124\}. $1.5^{\mathrm{t}}+10.1^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii.
Glu-D1ar\{03124\}. $2^{\mathrm{t}}+10.1^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii.
Glu-D1as\{03124\}. $1.5^{\mathrm{t}}+10.2^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii.
Glu-D1at $\{03124\}$. $3^{\mathrm{t}}+10.1^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii.
Glu-D1au\{03124\}. $2.1^{\mathrm{t}}+10.2^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii.
Glu-D1av\{03124\}. $2^{\mathrm{t}}+12.3^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii.
Glu-D1aw\{03124\}. $1^{\mathrm{t}}+10^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii.
Glu-D1ax\{03124\}. $1^{\mathrm{t}}+12^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii.
Glu-D1ay\{03124\}. $1^{\mathrm{t}}+10.1^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii.
Glu-D1az\{03124\}. $4^{\mathrm{t}}+12.2^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii.
Glu-D1ba\{03124\}. $1^{\mathrm{t}}+12.3^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii.
Glu-D1bb $\{03124\}$. $1.5^{\mathrm{t}}+11^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii.
Glu-D1bc\{03124\}. $1.5^{\mathrm{t}}+10.3^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii.
Glu-D1bd\{03124\}. $1^{\mathrm{t}}+11^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii.
Glu-D1be\{03124\}. 2.1 $1^{\text {t}}+12.4^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii.
Glu-D1bf\{03124\}. $2^{\mathrm{t}}+12.1^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii $\{03124\}$.
Glu-D1bg\{03124\}. $3^{\mathrm{t}}+10.2^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii.
Glu-D1bh $\{03124\} .4^{\mathrm{t}}+10.1^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii.
Glu-D1bi\{03124\}. $4^{\mathrm{t}}+10.2^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii.
Glu-D1bj $\{03124\}$. $5^{\mathrm{t}}+11^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii.
Glu-D1bk $\{03124\}$. $5^{\mathrm{t}}+10.1^{\mathrm{t}}\{03124\}$. dv: Ae. Tauschii.
Glu-D1bl $\{03124\}$. $5^{\mathrm{t}}+12.2^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii.
Glu-D1bm\{03124\}. $5^{* t}+$ null\{03124\}. dv: Ae. tauschii.
Glu-D1bn $\{03124\} .5^{* t}+12\{03124\}$. dv: Ae. tauschii.
Glu-D1 \{421\} appears to have arison as the result of a deficiency of subunit 12 from GluD1a $(2+12)$; subunits 2 and 12 are referred to as D1 and D5 in \{421\}. One of the GluD1o subunits has been numbered 13 in \{755\}; 13 was previously used to number a subunit encoded by Glu-B1f $\{13+16\}$ and Glu-B1g $\{13+19\}\{1116\}$. Subunit 9 of Glu$D 1 g(5+9)$ was so numbered in $\{478\}$ because its mobility is the same as one of the subunits encoded by Glu-B1c (7+9).
Five combinations involving 6 HMW subunits [1D \{p-t \}] are listed in $\{420\}$. Eleven additional Glu-D1 alleles in T. tauschii were described $\{755\}$.

Seven transfers of Glu-D1a and 10 of Glu-D1d (5+10) from chromosome 1D to chromosome 1A in triticale were described \{846\}.
The subunit 2.2* encoded by Glu-D1al above and Glu-D1-1m in the appropriate list below has an unusually high Mr comparison of its N -terminal sequence and amino acid composition with those of subunit 2 (encoded by Glu-D1-1a indicated that its greater Mr , could be due to the presence of a larger central repetitive domain, although further evidence suggested that this does not affect the conformational properties of the subunit \{02107\}. The alleles originally designated Glu-D1w (encoding 'subunits' 2 (or 2^{t} denoting its origin in the Ae. tauschii genome) +T1+T2), Glu-D1af (encoding 3 9or $\left.3^{\mathrm{t}}\right)+\mathrm{T} 1+\mathrm{T} 2$) and Glu-D1ag (encoding 1.5 (or1.5 $5^{\mathrm{t}}+\mathrm{T} 1+\mathrm{T} 2$) share the component T 1 that was originally classified as a HMW glutenin. However, it has since been shown \{02108\} that this protein is soluble in aqueous ethanol, casting doubt upon this classification. More recently, it has been shown \{02109\}, from one and two dimensional gel electrophoresis based upon SDS-PAGE and A-PAGE, and from N-terminal sequencing, that this protein is an omega-gliadin of unusually low electrophoretic mobility in SDSPAGE, encoded by a locus located on the short arm of chromosome 1D, though distant 913.18 cM) from the principle gliadin-encoding locus on 1D, Gli-D1, and 40.20 cM from the high molecular weight encoding locus, Glu-D1. The authors named the locus Gli-DT1 (see below, section Gliadins). Reference to T 1 was consequently removed from the Glu$D 1$ list. As a consequence of this finding, allele Glu-D1w was reused for a distinct allele, and Glu-D1af was omitted and will be reused for a future allele, since the combinations of subunits that these alleles originally represented are no longer unique.
In $\{03124\}$, null alleles were observed for both Glu-D1-1 and Glu-D1-2, which, naturally, are not necessarily the same as those previously reported for this locus, meaning that composite alleles involving them in this study and corresponding to combinations apparently already listed in the Catalogue, may, in fact, represent novel alleles. It is also found that certain subunits of apparently identical relative mobility in SDS-PAGE showed different surface hydrophobocities in RP-HPLC; and the reverse situation was also observed (the same hydrophobicity, but different electrophoretic mobilities).
It was shown $\{03126\}$ that the relatively small size of a y-type HMW glutenin subunit, named 12.4^{t} (encoded by Glu-D1-1t \{03124\} - see the relevant list below) and carried by accession CPI110750 of Ae. tauschii, is due to the deletion of blocks of repetitive motifs, amounting to approximately 200 amino acids, probably caused by unequal crossing-over.
Note that the cultivar Fiorello is given as a standard for Glu-D1h encoding subunits 5+12 and for Glu-D1w encoding subunits 5^{*+10}. An attempt to resolve this apparent conflict will be made in a future update.
Alleles and subunits at Glu-A1-1 and Glu-A1-2: Glu-A1-1 encodes X-type glutenins and Glu-A1-2 encodes y-type glutenins.
Glu-A1-1.
Glu-A1-1a. Null. v: CS.
Glu-A1-1b. 1. v: Hope.
Glu-A1-1c. 2^{*}. v: Bezostaya 1.
A PCR marker specific for the Glu-A1-1c (Ax2 ${ }^{*}$) allele was developed in $\{0147\}$.
Glu-A1-1d. v: V74, Spain.
Glu-A1-1e. v: 132c, Poland.
Glu-A1-1f. v: 112-29, Sudan.
Glu-A1-1g. v: Landrace 1600.
Glu-A1-1h. tv: PI 94683, USSR, T. dicoccum.
Glu-A1-1i. tv: CI 12213, India, T. dicoccum.
Glu-A1-1j. 1'. tv: PI 352359, Germany, T. dicoccum; Lambro.
Glu-A1-1k. 26. v: BT-2288.

Glu-A1-1I. tv: Chinook, Canada.
Glu-A1-1m. tv: Nugget Biotype 1, Canada.
Glu-A1-1n. 1". tv: Corado, Portugal.
Glu-A1-1o. $2^{* *}$. tv: PI 61189, USSR, Aric 581/1.
Glu-A1-1p. 3 ${ }^{*}$. v: David 1.
Glu-A1-1q. $2^{* * *}$. tv: Melianopus 1528.
Glu-A1-1r. 39. i: T. thaoudar IPSR 1020006/6* Sicco.
Glu-A1-1s. 41. i: T. thaoudar G3152/6*Sicco.
Glu-A1-1t $\{602\} .21^{*}\{602\} . \quad$ v: W29323, W 3879, W 31169. Glu-A1-1t is a provisional designation; definitive evidence that subunit 21^{*}, which has a mobility similar to that of subunit 21, is a 'x-type' and not a 'y-type' protein has not been obtained.
Glu-A1-1u $\{02106\} .2^{* B}\{02106\}$. v: Bankuti 1201.
Glu-A1-2.
Glu-A1-2a. Null. v: CS.
Glu-A1-2b. 40. i: T. thaoudar IPSR1020006/6* Sicco.
Glu-A1-2c. 42. i: T. thaoudar G3152/6*Sicco.
Glu-B1-1.
Glu-B1-1a. 7. v: CS.
A PCR marker (2373 bp) for the Glu-B1-1a (Bx7) allele was developed in $\{0145\}$.
Glu-B1-1b. 7,7*. v: Flinor, Bezostaya 1, Owens, Norstar.
Glu-B1-1c. 7'. v: Adonis.
Glu-B1-1d. 6. v: Hope.
Glu-B1-1e. 20. v: Federation.
Glu-B1-1f. 13. v: Lancota.
Glu-B1-1g. 14. v: Sappo.
Glu-B1-1h. 17. v: Gabo.
Glu-B1-1i. 21.21x $\{03116\}$. v: Dunav; Foison\{03116\}.
Glu-B1-1j. 23. v: Spica D.
Glu-B1-1k. tv: PI 94640, Iran, T. dicoccum.
Glu-B1-1I. tv: PI 355505, Germany, T. diccocum.
Glu-B1-1m. tv: PI 352354, Ethiopia, T. dicoccum.
Glu-B1-1n. tv: PI 94633, Morocco, T. dicoccum.
Glu-B1-1o. v: Supreza, Canada.
Glu-B1-1p. v: Mondor.
Glu-B1-1q. tv: Canoco de Grao Escuro, Portugal.
Glu-B1-1r. tv: Tremez Mollez, Portugal.
Glu-B1-1s. tv: Quaduro, Italy.
Glu-B1-1t. tv: Athena, Italy.
Glu-B1-1u. 26. v: Cologna 1.
Glu-B1-1v. 28. v: Forlani.
Glu-B1-1w. Null. v: Olympic mutant.
Glu-B1-1x. 30. v: Marinar.
Glu-B1-1y. 32. v: BG-1943.
Glu-B1-1z. 34. v: Jeja Almendros.
Glu-B1-1aa. 37. v: Shedraya Polesja.
Glu-B1-1ab. 6*. v: Dawbill.
Glu-B1-1ac $\{03116\}$. 6.8\{03116\}. v: Carnac hexaploid triticale $\{03116\}$.
Glu-B1-1ad\{03122\}. $13^{*}\{03122\}$. v: PI-348767 spelt $\{03122\}$.
Glu-B1-2.
Glu-B1-2a. 8. v: CS.

Glu-B1-2b. 9. v: Bezostaya 1.
Glu-B1-2c. 16. v: Lancota.
Glu-B1-2d. 19. v: NS 335.
Glu-B1-2e. 15. v: Sappo.
Glu-B1-2f. 18. v: Gabo.
Glu-B1-2g. 22. v: Serbian.
Glu-B1-2h. 24. v: Spica D.
Glu-B1-2i. tv: PI 355505, Germany, T. dicoccum.
Glu-B1-2j. tv: PI 352354, Ethiopia, T. dicoccum.
Glu-B1-2k. tv: PI 94633, Morocco, T. dicoccum.
Glu-B1-2I. 11. v: BT-2288.
Glu-B1-2m. v: Supreza, Canada.
Glu-B1-2n. v: Mondor.
Glu-B1-2o. 8*. v: Dawbull.
Glu-B1-2p. tv: Canoco de Grao Escuro, Portugal.
Glu-B1-2q. tv: Tremez Mollez, Portugal, T. durum.
Glu-B1-2r. tv: Quaduro, Italy, T. durum.
Glu-B1-2s. 18*. v: David.
Glu-B1-2t. 27. v: Cologna 1.
Glu-B1-2u. 29. v: Forlani.
Glu-B1-2v. Null. v: Olympic mutant.
Glu-B1-2w. 31. v: Marinar.
Glu-B1-2x. 33. v: BG-1943.
Glu-B1-2y. 35. v: Jeja Almendros.
Glu-B1-2z\{03116\}. 20y\{03116\}. v: Carnac hexaploid triticale\{03116\}.
Glu-B1-2aa\{03122\}. 18'\{03122\}. v: PI-348631 spelt $\{03122\}$.
Glu-B1-2ab\{03116\}. 21y\{03116\}. v: Foison\{03116\}.
Glu-D1-1.
Glu-D1-1a. 2. v: CS.
Glu-D1-1b. 3. v: Hobbit.
Glu-D1-1c. 4. v: Champlein.
Glu-D1-1d. 5. v: Hope.
PCR markers specific for the Glu-D1-1d (Dx5) allele were developed in $\{0145\}$ and \{0147\}.
Glu-D1-1e. 2.2. v: Danchi.
Glu-D1-1f. Null. v: Nap Hal, Nepal.
Glu-D1-1g. 2.1. v: AUS 14653, Afghanistan.
Glu-D1-1h. 2.3. v: PI 348465.
Glu-D1-1i. 38. v: Leningradka.
Glu-D1-1j\{668\}. 43\{668\}. i: Ae. tauschii accession TA2450/2*.
Glu-D1-1k\{755\}. 4.1\{755\}. dv: Ae. tauschii.
Glu-D1-1r\{755\}. 5.1\{755\}. dv: Ae. tauschii.
This allele was previously designated Glu-D1-1j in the 1998 Catalogue.
Glu-D1-11\{1578\}. 1.5\{1578\}. dv: Ae. tauschii.
Glu-D1-1m\{02107\}. $2.2^{*}\{02107\}$. v: MG315.
Glu-D1-1n\{03122\}. 2.4\{03122\}. v: PI-348473 spelt wheat accession\{03122\}.
Glu-D1-1o\{03122\}. 2.5\{03122\}. v: PI-3484572 spelt wheat accesion $\{03122\}$.
Glu-D1-1p\{03124\}. $\left.1^{\text {t }\{03124\} . ~ d v: ~ A e . ~ t a u s c h i i ~} 003124\right\}$.
Glu-D1-1q\{03124\}. $5^{* t}\{03124\}$. dv: Ae. tauschii $\{03124\}$.
Glu-D1-2.

Glu-D1-2a. 12. v: CS.
A PCR marker (612 bp) for the Glu-D1-2a (Dy12) allele was developed in $\{0145\}$.
Glu-D1-2b. 10. v: Hope.
PCR markers (576 bp and 2176bp) for the Glu-D1-2b (Dy10) allele were developed in $\{0145\}$ and $\{0147\}$, respectively.
Glu-D1-2c. 9. v: BT-2288.
Glu-D1-2d. Null. v: Nap Hal, Nepal.
Glu-D1-2e. 12*. v: Tudest.
Glu-D1-2f. 13. v: AUS 14519, T. macha.
Glu-D1-2g. 36. i: Iranian landrace 3048/5* Sicco.
Glu-D1-2h. 11. v: Flinor.
Glu-D1-2i\{668\}. 44\{668\}. i: Ae. tauschii TA2450/2*.
Glu-D1-2j\{836\}. 10'\{836\}. v: Coker 68-15.
Glu-D1-2k\{755\}. T1\{755\}. dv: Ae. tauschii.
Glu-D1-21\{755\}. T2\{755\}. dv: Ae. tauschii.
Glu-D1-2m\{755\}. 10.1\{755\}. dv: Ae. tauschii.
Glu-D1-2n\{755\}. 10.2\{755\}. dv: Ae. tauschii.
Glu-D1-2o\{755\}. 10.3\{755\}. dv: Ae. tauschii.
Glu-D1-2p\{1578\}. 10.5\{1578\}. dv: Ae. tauschii.
Glu-D1-2q\{03122\}. 12 '\{03122\}. v: PI-348495 spelt wheat accession $\{03122\}$.
Glu-D1-2r\{03124\}. 12.1t $\{03124\}$. dv: Ae. tauschii.
Glu-D1-2s $\{03124\}$. $12.3^{\mathrm{t}}\{03124\}$. dv: Ae. tauschii.
Glu-D1-2t\{03124\}. 12.4t $\{03124\}$. dv: Ae. tauschii.
Glu-Agí1\{374\}. 1 $\mathrm{Ag}^{\mathrm{i}}\{374\}$. ad: Vilmorin 27/Thin. intermedium.
Glu-E1\{781\}. 1ES\{781\}. ad: CS/E. elongata.
Glu-H1\{781\}. [Hor 3\{1337\}]. 1H\{781\}.1HL\{1337\}. ad: CS/Betzes\{781\}. al: Various barley cultivars $\{1337\}$.
Glu-H $\boldsymbol{H}^{\text {ch }} 1$. $1 \mathrm{H}^{\text {ch }}\{1123\}$. ad: CS/H. chilense.
$\boldsymbol{G l u}-\boldsymbol{H}^{\text {ch }} \boldsymbol{1 a}\{03114\} .1^{\text {Hch }}\{03114\}$. al: H. chilense Accession H1 003114$\}$.
$\boldsymbol{G l u}-\boldsymbol{H}^{\boldsymbol{c h}} \mathbf{1 b}\{03114\} .2^{\text {Hch }}\{03114\}$. al: H. chilense Accession $\mathrm{H} 11\{03114\}$.
$\boldsymbol{G l u}-\boldsymbol{H}^{\text {ch }} \mathbf{1 c}\{03114\} .3^{\text {Hch }}\{03114\}$. al: H. chilense Accession H7\{03114\}.
$\boldsymbol{G l u}-\boldsymbol{H}^{\text {ch }} \mathbf{1 d}\{03114\} .4^{\mathrm{Hch}}\{03114\}$. al: H. chilense Accesion H16\{03114\}.
Glu- $\boldsymbol{H}^{\text {ch }} \mathbf{1} \boldsymbol{e}\{03114\} .5^{\text {Hch }}\{03114\}$. al: H. chilense Accession $\mathrm{H} 47\{03114\}$.
$\boldsymbol{G l u}-\boldsymbol{H}^{\text {ch }} \mathbf{1 f}\{03114\} .6^{\mathrm{Hch}}\{03114\}$. al: H. chilense Accession H220\{03114\}.
$\boldsymbol{G l u}-\boldsymbol{H}^{\text {ch }} \mathbf{1 g}\{03114\} .7^{\mathrm{Hch}}\{03114\}$. al: H. chilense Accession H293\{03114\}.
$\boldsymbol{G l u}-\boldsymbol{H}^{\text {ch }} \mathbf{1 h}\{03114\} .8^{\mathrm{Hch}}\{03114\}$. al: H. chilense Accession H297\{03114\}.
$\boldsymbol{G l u}-\boldsymbol{H}^{\text {ch }} \mathbf{1 i}\{03114\}$. $9^{\mathrm{Hch}}\{03114\}$. al: H. chilense Accession H252\{03114\}.
$\boldsymbol{G l u}-\boldsymbol{H}^{\text {ch }} \mathbf{1 j}\{03114\}$. $10^{\text {Hch }}\{03114\}$. al: H. chilense Accession $\mathrm{H} 210\{03114\}$.
38 accessions (natural populations) of Hordeum chilense carrying the following 10
subunits were used as the maternal parents of 121 lines of primary tritordeum, and
evaluations for associations with bread-making quality initiated $\{03114\}$. Subunits $1^{\text {Hch }}$,
$2^{\text {Hch }}$ and $3^{\text {Hch }}$ were previously referred to as $\mathrm{H}^{\mathrm{ch}} \mathrm{a}, \mathrm{H}^{\mathrm{ch}} \mathrm{b}$ and $\mathrm{H}^{\mathrm{ch}} \mathrm{c}\{03112\}$.
Glu-H $\boldsymbol{H}^{t} \mathbf{1}\{1037\}$. $1 \mathrm{H}^{t} \mathrm{~L}\{1037\}$. ad: CS/E. trachycaulum.
Glu-R1\{781,1356\}. [Sec 3\{1336\}]. 1R\{781,1336\}.1RL\{1356,1340\}. ad: CS/Imperial;
Holdfast/ King II\{1340\}. tr: CS Imperial 1DS.1RL\{1356\}.
Glu-R1a\{03116\}. $1^{\mathrm{T}}-4^{\mathrm{r}}\{03116\}$. v: Indiana hexaploid triticale\{03116\}.
Glu-R1b $\{03116\} .2^{\mathrm{r}}-6.5^{\mathrm{r}}\{03116\}$. v: Graal hexaploid triticale $\{03116\}$.
Glu-R1c $\{03116\}$. $6^{\mathrm{r}}-13^{\mathrm{r}}\{03116\}$. v: Almao hexaploid triticale $\{03116\}$.
Glu-R1d $\{03116\}$. $2^{\mathrm{r}}-9^{\mathrm{r}}\{03116\}$. v: Olympus hexaploid triticale $\{03116\}$.
Glu-R1e\{03116\}. $6.5^{\mathrm{r}}\{03116\}$. v: Clercal hexaploid triticale $\{03116\}$.
Glu-R1f $\{03115\}$. $0.8^{\mathrm{r}}-6^{\mathrm{r}}\{03115\}$. v: Carmara hexaploid triticale $\{03115\}$.

Glu-R1g\{03115\}. $5.8^{\mathrm{r}}\{03115\}$. v: Arrayan hexaploid triticale $\{03115\}$. There is a difficulty in the assignment of subunit 6^{r} in the Glu-R1-1 and Glu-R1-2 lists, since it appears as an x-type subunit in allele Glu-R1c and as a y-type subunit in allele Glu-R1f. It is currently provisionally assigned to the Glu-R1-1 list since, based upon its relative electrophoretic mobility, it is considered more likely to be an x-type subunit. Some of the remaining designations should also be considered as provisional since they too are not free of ambiguity.

From study of chromosome substitutions in bread wheat $\{03117\}$, it was found that a chromosome 1R carrying HMW secalin subunit 6.5^{r} (Glu-R1e), originally derived from the 'Petkus' rye population, was associated with bread making quality (i) intermediate between chromosome 1A carrying the null allele Glu-A1c and chromosome 1A carrying HMW glutenin subunit 2^{*} encoded by Glu-A1b; (ii) equivalent to a chromosome carrying HMW glutenin subunit 7 encoded by Glu-B1a; and (iii) inferior to chromosomes 1D with distinct alleles.
Glu-R1-1.
Glu-R1-1a\{03116\}. $1^{\mathrm{r}}\{03116\}$. v: Indiana hexaploid triticale $\{03116\}$.
Glu-R1-1b $\{03116\}$. $2^{\mathrm{r}}\{03116\}$. v: Graal hexaploid triticale $\{03116\}$.
Glu-R1-1c $\{03116\} .6^{\mathrm{r}}\{03116\}$. v: Alamo hexaploid triticale $\{03116\}$.
Glu-R1-1d $\{03115\} . \quad 0.8^{\mathrm{r}}\{03115\}$. v: Carmara hexaploid triticale $\{03115\}$.
Glu-R1-1e\{03115\}. $5.8^{\text {r }}\{03115\}$. v: Arrayan hexaploid triticale\{03115\}.
Glu-R1-2. 1R, 1RL.
Glu-R1-2a\{03116\}. $4^{\mathrm{r}}\{03116\}$. v: Indiana hexaploid triticale\{03116\}.
Glu-R1-2b\{03116\}. $6.5^{\mathrm{r}}\{03116\}$. v: Graal hexaploid triticale $\{03116\}$.
Glu-R1-2c $\{03116\}$. $13^{\text {r }}\{03116\}$. v: Alamo hexaploid triticale $\{03116\}$.
Glu-R1-2d\{03116\}. $9^{\mathrm{r}}\{03116\}$. v: Olympus hexaploid triticale $\{03116\}$.
Glu- $\boldsymbol{R}^{\boldsymbol{m}} \mathbf{1}\{1339\}$. $1 \mathrm{R}^{\mathrm{m}} \mathrm{L}\{1339,1340\}$. ad: CS/S. montanum $\{1339,1340\}$.
Glu-S ${ }^{l} 1\{1228\}$. $1 S^{l} \mathrm{~L}\{1228\}$. ma: In Ae. longissima $2 / A e$. longissima $10, G l u-S^{l} 1$, Glu-S 3 , one glucose phosphate isomerase locus, and three gliadin loci were mapped relative to one and other $\{1228\}$ as follows: Glu-S 1 - $15.9 \mathrm{cM}-G p i-S^{l} 1-38 \mathrm{cM}-G l i-S^{l} 4-7.1 \mathrm{cM}-\mathrm{Glu}^{l} \mathrm{~S}^{l} 3$ $0.9 \mathrm{cM}-$ Gli-S $^{l} 1-5.6 \mathrm{cM}-\mathrm{Gli}-S^{l} 5$. Glu-S ${ }^{l} 1$ is located in $1 \mathrm{~S}^{1} \mathrm{~L}$ and the other loci are in $1 \mathrm{~S}^{1} \mathrm{~S}$.
Glu-U1 $\{150\}$. $1 \mathrm{U}\{150,781\}$. ad: CS/Ae. umbellulata $\{150,781\}$.
Glu-V1\{111,242,1026\}. 1V\{1026,111\}. ad: CS/D. villosum; Creso/D. villosum.
Glu-V1a\{1651\}. 71\{1651\}. al: D. villosum.
Glu-V1b\{1651\}. 72\{1651\}. al: D. villosum.
Glu-V1c\{1651\}. 73\{1651\}. al: D. villosum.
Glu-V1d\{1651\}. 74\{1651\}. al: D. villosum.
Glu-V1e\{1651\}. 75\{1651\}. al: D. villosum.
Glu-V1f\{1651\}. 76\{1651\}. al: D. villosum.
Glu-V1g\{1651\}. $77\{1651\}$. al: D. villosum.
Glu-V1h\{1651\}. 78\{1651\}. al: D. villosum.
Glu-V1i\{1651\}. 79\{1651\}. al: D. villosum.
Glu-V1j\{1651\}. 80\{1651\}. al: D. villosum.
Glu-V1k\{1651\}. null\{1651\}. al: D. villosum.
Glu-V1I\{1651\}. 81+82\{1651\}. al: D. villosum.
Glu-V1m\{1651\}. 83+84\{1651\}. al: D. villosum.
Glu-V1n\{1651\}. 85+86\{1651\}. al: D. villosum.
Alleles and subunits at Glu-V1 and GLU-V1-2 : The following is analogous to the Glu-11 and Glu-1-2 lists given earlier to identify x-type and y-type subunits in wheat. It was assumed that where an allele at Glu-V1 produces only a single subunit, it is an x-type subunit and so encoded by Glu-V1-1 rather than by Glu-V1-2; the electrophoretic
mobilities of the subunits are all greater, though some only marginally so, than subunit 7 encoded by Glu-B1-1a (an x-type subunit), and extend beyond the mobility of subunit 12 encoded by Glu-D1-2a (a y-type subunit) \{1651\}; therefore, it is quite possible that any one of the subunits designated as encoded by Glu-V1-1 is, in fact, encoded by Glu-V1-2. The designation given here is intended to be the most practically useful until the identities of the genes encoding the alleles are directly established.
Glu-V1-1.
Glu-V1-1a\{1651\}. 71\{1651\}. al: D. villosum.
Glu-V1-1b\{1651\}. $72\{1651\}$. al: D. villosum.
Glu-V1-1c\{1651\}. 73\{1651\}. al: D. villosum.
Glu-V1-1d\{1651\}. 74\{1651\}. al: D. villosum.
Glu-V1-1e\{1651\}. 75\{1651\}. al: D. villosum.
Glu-V1-1f\{1651\}. 76\{1651\}. al: D. villosum.
Glu-V1-1g\{1651\}. 77\{1651\}. al: D. villosum.
Glu-V1-1h\{1651\}. 78\{1651\}. al: D. villosum.
Glu-V1-1i\{1651\}. 79\{1651\}. al: D. villosum.
Glu-V1-1j\{1651\}. 80\{1651\}. al: D. villosum.
Glu-V1-1k\{1651\}. null\{1651\}. al: D. villosum.
Glu-V1-1I\{1651\}. 81\{1651\}. al: D. villosum.
Glu-V1-1m\{1651\}. 83\{1651\}. al: D. villosum.
Glu-V1-1n\{1651\}. 85\{1651\}. al: D. villosum.
Glu-V1-2.
Glu-V1-2a\{1651\}. null\{1651\}. al: D. villosum.
Glu-V1-2b\{1651\}. 82\{1651\}. al: D. villosum.
Glu-V1-2c\{1651\}. 84\{1651\}. al: D. villosum.
Glu-V1-2d\{1651\}. 86\{1651\}. al: D. villosum.
A Chinese cultivar of T. aestivum, Xiaoyanmai 7, carries a subunit with electrophoretic mobility in 10% SDS-PAGE well beyond that of subunits so far observed in T. aestivum. It may derive from Agropyron elongatum, which was used in the breeding programme that led to the variety $\{1538\}$. It has not been given a subunit number or allelic designation, because its genetic control has not been elucidated.

74.3.1.2. Glu-2

Glu-B2\{819,277\}. [XGlu-B2\{277\}]. 1BS. s: CS*/Cheyenne 1B\{277\}. stv: Langdon ${ }^{*} / T$. turgidum var. dicoccoides 1B\{277\}.
Glu-B2a\{00114\}. 12\{00114\}. tv: Mexicali.
Glu-B2b\{00114\}. Null\{00114\}. tv: Langdon.
Gli-B3 was designated Glu-B2 \{589\} until the name of the locus was changed in $\{1119\}$.

74.3.1.3. Glu-3

The Glu-3 loci are defined as the cluster of LMW glutenin genes previously considered a component of the compound Gli-1 loci.
More than 30 LMW glutenin complete genes, partial genes or pseudogenes have been sequenced from Triticum species (reviewed in $\{0245\}$).
In T. aestivum, only Glu-B3 was shown to recombine with the gliadin genes ($1.7+/-0.8$) $\{1355,1358\}$. However, in T. durum, recombination was observed for both Glu-A3 and GluB3 with their respective Gli-1 loci: the map distance between Glu-A3 and Gli-A1 has been estimated as $1.3+/-0.4 \mathrm{cM}\{1242\}$, and that between Glu-B3 and Gli-B1 as $2.0+/-0.8$ in
$\{1144\}$ and as $2.0+/-0.4$ in $\{1242\}$. It appears that Glu-B3 is proximal to Gli-B1, and there is some evidence, albeit only tentative as the authors acknowledge, that Glu-A3 is proximal to Gli-A1 \{1242\}.
Whereas hitherto it has been widely thought that all the LMW subunits of glutenin were encoded by genes located on the chromosomes of homoeologous group 1, it has been demonstrated that, although the majority of the subunits are indeed controlled by genes on this group, some of the C subunits must be controlled by loci elsewhere in the genome $\{482\}$. A novel type of polymeric protein (M_{r} approx. 71,000) was reported in the Australian advanced breeding line DD118 \{03125\}. It participates in the polymeric structure of glutenin (possibly as a chain terminator), and with an M_{r} of approximately 71,000 , could be considered as a D-subunit of LMW glutenin. However, N -terminal sequencing suggests it to be a Gli-B1 type omega-gliadin that has acquired a cysteine residue through mutation.

In an electrophoretic survey of 51 primary tritordeums \{03113\}, 20 distinct whole banding patterns ($\mathrm{a}-\mathrm{t}$), each consisting of between one and three bands, were observed for D-zone prolamins exhibiting glutenin-like solubility characteristics.

In 85 Japanese common wheat cultivars and 61 elite F_{6} breeding lines, 3 alleles were observed at each of Glu-A3 and Glu-B3, and 2 alleles at Glu-D3 were named according to their parental origins in three doubled haploid mapping populations $\{03135\}$.

C-type LMW glutenin subunits in CS were assigned to chromosome groups 1 and 6, and shown to have sequences very similar to those of alpha- and gamma-gliadins $\{03134\}$. The authors suggest that they may be encoded by novel genes at loci tightly linked or present within the Gli-1 and Gli-2 loci, unlike other LMW glutenin subunits encoded by the Glu-3 loci.

The HMW and LMW glutenin subunits carried by chromosome $1 \mathrm{~A}^{\mathrm{m}}$ of T. monococcum accession G1777 were characterised electrophoretically and evaluated for quality characteristics using recombinant chromosome substitution lines with chromosome 1A of CS $\{03142\}$. The HMW subunits from G1777 are promising for bread-making quality, whereas its LMW subunits are promising for biscuit-making quality.

The bread wheat cv. Salmone has been shown to carry two DNA fragments designated as SF720 and SF750 located on the chromosome 1B satellite and associated with the presence of two LMW glutenin subunits $\{03143\}$. However, the authors suggest that they occur at a locus other than Glu-B3 due to their relatively high frequency of recombination with Gli-B3.

A naming system in which roman numerals are assigned to whole banding patterns for the LMW glutenin subunit is given in $\{03131\}$ as an alternative to the LMW-1/-2 system described in $\{03136\}$. A further system naming whole banding patterns from LMW-1 to LMW-23 in emmer wheat is described in $\{03137\}$.
In $\{00111\}$, in a study of common and durum wheats from Portugal, the authors used the nomenclature system described in $\{00113\}$ for the LMW subunits in common wheat, and that described in $\{00114\}$ for the LMW subunits in durum wheat. The latter system was updated according to $\{02110\}$, but has been changed herein to new alleles with the earlier durum designation $\{00114\}$ given as synonyms.In $\{03116\}$, it was suggested that Glu-B3d (common wheat standard genetic stock) is equivalent to Glu-B3r (durum wheat standard genetic stock), and that (referring to article \{03127\}) LMWsubunits observed in some Portugese triticales could be of the durum type.
Glu-A3\{1358\}. 1AS\{1358\}. v: CS.

Glu-A3a\{481\}. v: CS.
Glu-A3b\{481\}. v: Gabo.
Glu-A3c\{481\}. v: Cheyenne.
Glu-A3d\{481\}. v: Cappelle Desprez, Orca.
Glu-A3e\{481\}. v: Hope, Insignia.
Glu-A3f\{481\}. v: Rescue.
Glu-A3g\{00113,00114\}. 6+10+20\{00114\}. tv: Claro de Balazote.
Glu-A3h $\{00114,03116\}$. [Glu-A3d'\{03116\}]. null\{00114\}. v: Magistral hexaploid triticale\{03116\}.
Glu-A3i\{02110\}. $8^{*}+11\{02110\}$. tv: Mourisco Fino.
In 112 common wheat cultivars from Argentina, 11 microsatellite alleles plus a null allele were found at the Glu-A3 locus $\{03123\}$.
Glu-A3j\{00114\}. [Glu-A3a\{00114\}]. 6\{00114\}. tv: Mexicali.
Glu-A3k\{00114\}. [Glu-A3b(00114)]. 5\{00114\}. tv: Langdon.
Glu-A3I\{00114\}. [Glu-A3c\{00114\}]. 6+10\{00114\}. tv: Cocorit.
Glu-A3m\{00114\}. [Glu-A3d\{00114\}]. 6+11\{00114\}. tv: Alaga.
Glu-A3n\{00114\}. [Glu-A3e\{00114\}]. 11\{00114\}. tv: Blatfort.
Glu-A3o\{00114\}. [Glu-A3f\{00114\}]. 6+11+20\{00114\}. tv: Clarofino.
Glu-A3p $\{00114\}$. [Glu-A3h\{00114\}]. Null\{00114\}. tv: Jiloca.
Glu-B3\{1358\}. 1BS\{1358\}. v: CS.
Glu-B3a\{481,\}. v: CS.
Glu-B3b\{481\}. v: Gabo, Timstein, Hope.
Glu-B3c\{481\}. v: Insignia, Halberd.
Glu-B3d\{481\}. v: Orca.
Glu-B3e\{481\}. v: Cheyenne.
Glu-B3f\{481\}. v: Radja.
Glu-B3g\{481\}. v: Kharkov, Bungulla.
Glu-B3h\{481\}. v: Thatcher, Rescue.
Glu-B3i\{481\}. v: Norin-61.
Glu-B3j\{476,02110\}. $4+6^{*}+15+19\{02110\}$. tv: Duramba-B, Duramba-D, Langdon; Mourisco Fino.
Glu-B3k\{476,02110\}. 8+9+13+16+19\{02110\}. tv: ALP-153, Dural, Durati, Edmore; Faisca.
Glu-B3I\{476\}. tv: Gionp-1954.
Glu-B3m\{03120\}. [Glu-B3b'\{03120\}]. v: Soissons\{03120\}.
Glu-B3n\{03120\}. [Glu-B3c'\{03120\}]. v: Courtot\{03120\}.
Glu-B3o $\{03116\}$. [Glu-B3i'\{03116\}]. v: Olympus hexaploid triticale $\{03116\}$.
Glu-B3p $\{03116\}$. [Glu-B3k\{03116\}]. v: Alamo hexaploid triticale\{03116\}.
Glu-B3q\{03115\}. [Glu-B3h'\{03115\}]. v: Torote hexaploid triticale\{03115\}.
Glu-B3r\{00114\}. [Glu-B3a\{00114\}]. $2+4+15+19\{00114\}$. tv: Mexicali.
Glu-B3s\{00114\}. [Glu-B3b\{00114\}]. 8+9+13+16\{00114\}. tv: Langdon.
Glu-B3t\{00114\}. [Glu-B3c\{00114\}]. 2+4+14+15+19\{00114\}. tv: Jiloca.
Glu-B3u\{00114\}. [Glu-B3d\{00114\}]. $2+4+15+17+19\{00114\}$. tv: Mundial.
Glu-B3w\{00114\}. [Glu-B3f\{00114\}]. 2+4+15+17\{00114\}. tv: Ardente.
Glu-B3v \{00114\}. [Glu-B3e\{00114\}]. 2+4+15+16+18\{00114\}. tv: Granja Badajoz.
Glu-B3x\{00114\}. [Glu-B3g\{00114\}]. $2+4+15+16\{00114\}$. tv: Claro de Balazote.
Glu-B3y\{00114\}. [Glu-B3h\{00114\}]. 1+3+14+18\{00114\}. tv: Alaga.
Glu-D3\{1358,707\}. 1DS\{707,1358\}. v: CS.
Glu-D3a\{481\}. v: CS.
Glu-D3b\{481\}. v: Gabo.
Glu-D3c\{481\}. v: Insignia, Cappelle Desprez.

Glu-D3d\{481\}. v: Norin-61A.
Glu-D3e\{481\}. v: Orca, Thatcher.
Glu-E3\{480\}. 1ES\{480\}. su: CS/E. elongata.
Glu-S ${ }^{3}\{480,1228\}$. $1 S^{1}\{480\} .1 \mathrm{~S}^{1} \mathrm{~S}\{1228\}$. su: CS/Ae. longissima\{480,1228\}. ma: In $A e$. longissima 2 /Ae.longissima 10 glucose phosphate isomerase locus, and three gliadin loci were mapped relative to one another in \{1228\} as follows: Glu-S 1 - $15.9 \mathrm{cM}-\mathrm{Gpi}-\mathrm{S}^{l} 1-38$ cM- Gli-S $4-7.1 \mathrm{cM}-\mathrm{Glu}^{l} \mathrm{~S}^{l} 3-0.9 \mathrm{cM}-G l i-S^{l} 1-5.6 \mathrm{cM}-G l i-S^{l} 5$. Glu-S ${ }^{l} 1$ is located in $1 \mathrm{~S}^{1} \mathrm{~L}$ and othe other loci are in $1 \mathrm{~S}^{1} \mathrm{~S}$.
Glu-U3\{480\}. $1 \mathrm{U}\{480\}$. su: CS/Ae. umbellulata.
A series of papers $\{00106,00107,00108$ and 00109$\}$ describe considerable variation in primitive wheats not present in bread wheat (A genome species T. boeoticum, T. urartu, T. thaoudar, T. aegilopoides, T. monococcum, and D-genome species T. tauschii) for the low molecular weight subunits, sufficient to use them as a source for potentially changing flour properties in bread wheat.
In $\{00110\}$, variants for LMW glutenin subunits have been reported from study of twentyfour accessions of einkorn wheat (T. monococcum ssp. monococcum). Nine of these showed two electrophoretic bands for LMW subunits, arbitrarily designated 'a' and 'b', that appeared to be associated with good bread-making quality.The isolation of a new low-molecularweight glutenin subunit gene, located on chromosome 1D, was reported in $\{0350\}$.

74.3.1.4. Glu-4

The following loci, Glu-D4 and Glu-D5, encoding low molecular weight subunits of glutenin ($30-32 \mathrm{kDa}$) were described in $\{02111\}$; the proteins encoded by them were first observed earlier $\{02114,02115\}$, and the former was later tentatively assigned the symbol Glu-4 \{02116\}, before its chromosomal location was established and the locus definitively named as Glu-D4 in \{02111\}. While this locus is located on chromosome 1D (in accordance with the position on the group 1 chromosomes of the remaining glutenin encoding loci found to date), the locus Glu-D5 is located on chromosome 7D. In SDS-PAGE, the proteins from both loci are detected only in the presence of 4 -vinylpyridine added to the sample extract. Their amino acid compositions do not match those of the major prolamin groups; nonetheless, they classify as glutenins based upon solubility, immunological behaviour and N-terminal amino acid sequence (the latter suggesting an evolutionary link with the major (B and C) low molecular weight glutenin subunits).
Glu-D4\{02111\}. 1D\{02111\}. su: CS/Langdon 1D(1A); CS/Langdon 1D(1B) \{02111\}. Glu-D4a\{02111\}. v: J 24.
Glu-D4b $\{02111\}$. v: PBW 154.
Glu-D4c\{02111\}. Null allele. v: NI 4.

74.3.1.5. Glu-5

Glu-D5\{02111\}. 7D\{02111\}. su: CS/Langdon 7D(7A); CS/Langdon 7D(7B)\{02111\}.
Glu-D5a\{02111\}. v: PBW 154.
Glu-D5b\{02111\}. Null allele. v: K 68.
A collection of 173 Ae. tauschii accessions were analysed for low molecular weight glutenin subunits by SDS-PAGE \{02112\}. Thirty three different patterns for B-subunits and 43 for Csubunits were identified, some of which were of identical electrophoretic mobility to those observed in common wheat. Also observed were subunits with the same mobilities as the Dsubunits and as the subunits encoded by the Glu-D4 and Glu-D5 loci. This variation
represents a source of novel germplasm of potential value for breeding programmes aimed at improving the D -genome of common wheat in the context of bread-making quality.

PCR amplification of genomic DNA has been used to isolate three LMW glutenin genes in cultivar Chinese Spring, named LMWG-MB1, LMWG-MB2 and LMWG-MB3 \{01101\}. The deduced amino-acid sequences showed a high similarity between these ORFs and with those of other LMW glutenin genes. The authors state that the study provided direct evidence that insertions and/or deletions provide a mechanistic explanation for the allelic variation, and hence the resultant evolution, of prolamin genes, and comment on relationships with gammasecalins and beta-hordein families. Single-base substitutions at identical sites generate premature stop codons in both LMWG-MB2 and LMWG-MB3, indicating that these clones are pseudogenes.

74.3.2. Gliadins

These are heterogeneous mixtures of alcohol-soluble polypeptides without quaternary structure. The Gli-1 loci are compound and are now considered to comprise the omegagliadin and gamma gliadin $\{982,1415\}$ multigene families $\{494\}$, which in some circumstances may be divided into Gli-1-1 and Gli-1-2, respectively. The LMW glutenin multigene families, which are closely linked to the Gli-1 loci \{588\}, are listed separately as the Glu-3 set $\{1358\}$; information on map distance and gene order in relation to Glu-3 and the centromere is given in the preamble for the Glu-3 loci. There is evidence that a few of the omega-gliadin genes are separated from the main omega-gliadin gene cluster \{993\}. Variation at the Gli-1 loci was described earlier $\{634,996,1126\}$ and applied in mapping experiments $\{1243,1125,196,422,1120\}$. A rational system of naming the alleles was produced by Dr. E.V. Metakovsky\{988\}. This nomenclature is reproduced below. A considerable number of alleles were added to the original list given in \{988\}, and referenced here accordingly. A few alleles have been deleted, because, following much detailed comparison, there is now doubt that they can be reliably distinguished from existing alleles $\{9981\}$. The allelic letter in these cases has not been reused. To facilitate practical use of the list, the aim was to give at least three standard cultivars from a range of countries for each allele $\{9981\}$. This was achieved for the vast majority of entries and is a change from the original list compiled from \{988\}, where up to two standards were given. While the three or more standards described almost always include the original standards, some have been replaced for various reasons, such as international awareness of the cultivar, availability of seed, or the ease with which an allele can be identified in a particular genetic background \{9981\}. In the original list, where two cultivars were given as prototypes for an allele, the first named was from the USSR and the second from elsewhere; this is no longer the case, although care was taken to include a Russian cultivar where possible, to maintain a wide base of germplasm in which the alleles are available, as well as to acknowledge the research groups in the country where much of the pioneering work was carried out.
For discussion of null alleles at the Gli-1 and Gli-2 loci, see \{9984\}.
Recombination was observed within the gliadin multigene family at XGli-A1 \{277\}. These closely linked genes may correspond to Gli-A1 and Gli-A5, but they were temporarily designated XGli-A1.1 and XGli-A1.2 until orthology with Gli-A1 and/or Gli-A5 is established.

Note: The catalogue entries reproduced here only refer to alleles in T. aestivum; there is, however, enormous variation in the gliadins in the close relatives of wheat; see, for example, \{989\} for studies in T. monococcum (more than 80 gliadin electrophoretic patterns observed in 109 accessions), $\{990\}$ for studies in T. boeoticum (more than 50 electrophoretic patterns in 60 accessions), and $\{1076\}$ studies in T. durum (19 electrophoretic patterns, referring only to variation in the omego-gliadins, in 243 accessions).

In $\{00110\}$, variants for omega-gliadins were reported from study of twenty-four accessions of einkorn wheat (T. monococcum ssp. monococcum). In \{00111\}, in a study of common wheat and durum from Portugal, the authors used the nomenclature system described in \{00112\} for the omega-gliadins. In \{00116\}, a comparison between spelt and common wheat was carried out for the gliadins using a nomenclature system described in $\{00118\}$.
The Gli-1loci may be recognised by probes pcP387 \{372\} and pTag1436 \{065\}, and by specific microsatellites primers $\{252\}$. Furthermore, it was shown that probe pTag1436 differentiates gliadin alleles rather well; using this probe, famillies of gliadin alleles and some of their relationships were described $\{9988\}$.
Based upon morphological observation and RFLP analysis, it was proposed that the cultivar 'Chinese Spring' is a strain of the landrace 'Chengdu-guangtou' from the Chengdu Plain, Sichuan Province; this proposal is supported by the observation that CS and the landrace share the same alleles at all nine Gli-1, Gli-2 and Glu-1 loci \{see 01102\}.
PCR primers GAG5 and GAG6 were applied to 35 cultivars of closely related spelt and hexaploid wheat, and to eight cultivars of durum, to yield products originating from two gamma-gliadin genes mapped to chromosomes 1B (termed GAG56B) and 1D (termed GAG56D) $\{01103\}$. Two alleles for GAG56D (differing in a 9 bp deletion/duplication and single nucleotide polymorphism) were found, one a new allele and the other previously published \{01104\}. Meanwhile two alleles found for GAG56B among the durum wheats correlated with the presence of gluten quality markers, gamma-gliadins 42 or 45.

1B and 1D sulphur-poor omega-gliadins in cultivar Butte 86 were characterised by RP-HPLC, SDS-PAGE, two-dimensional PAGE, amino acid composition determination and sequencing, matrix assisted laser desorption ionisation-time of flight mass spectrometry and circular dichroism spectroscopy to reveal the detailed nature of the peptides belonging to the two groups, and showing that the complexity of mixtures of the peptides of the 1 B group was greater than that of the 1D group $\{01105\}$. Although circular dichroism spectra were similar for the two groups of peptides, and suggested a mainly flexible random structure, there was evidence for a significant amount of left-handed polyproline II helical conformation in the case of the 1D components. The authors placed some of the results in the context of the possible ancestor of the B-genome and relationships with the barley C-hordeins and rye omega-secalins.
Eleven new gliadin alleles were found in a collection of 52 Spanish landraces of common wheat $\{03141\}$. These will be added to the Gli-1 and Gli-2 allelic lists in the next Supplement.

74.3.2.1. Gli-1

Gli-A1 $\{1334,1125\}$. [Gld 1A\{1415\}]. 1AS\{150,634,1334,1607\}. s: CS ${ }^{*} /$ Cheyenne\{634\}. v: CS\{150,1334,1607\}.
Gli-A1a\{988\}. v: Castan\{991\}; CS\{988\}; Mara\{9986\}; Mentana\{9986\}; Millewa\{00119\}.
Gli-A1b\{988\}. v: Bezostaya 1, Mercia\{988\}; Tracy\{991\}.
Gli-A1c \{988\}. v: Ukrainka\{998\}; Gazul\{9985\}; Sava\{994\}; Hopps\{00119\}.
Gli-A1d\{988\}. v: Dankowska\{988\}; Cabezorro\{9985\}.
Gli-A1e\{988\}. v: Falchetto\{988\}; Open\{991\}; Touzelle\{991\}.
Gli-A1f\{988\}. v: Mironovskaya 808, Maris Freeman\{988\}; Arminda\{991\}.
Note: An allele Gli-A1f* is mentioned in $\{03130\}$.
Gli-A1g\{988\}. v: Gabo\{988\}; Adalid\{9985\}.
Gli-A1h\{988\}. v: Sadovo I\{988\}; Predela\{9981\}; Krajinka\{9981\}.
Gli-A1i\{988\}. v: Saratovskaya $36\{988\}$.
Gli-A1j\{988\}. v: Lutescens $62\{988\}$.

Gli-A1k\{988\}. v: Courtot\{991\}; Skala (heterogeneous) $\{988\}$; Soissons $\{991\}$; Spada\{9986\}.
Gli-A1I\{988\}. v: Lesostepka 75\{988\}; David\{9986\}; Salmone\{9986\}; Mura\{9981\}.
Gli-A1m\{988\}. v: Marquis\{988\}; Dneprovskaya 521 \{988\}; Carat\{991\}; Liocorno\{9986\}.
Gli-A1n\{988\}. v: Intensivnaya\{988\}.
Gli-A1o\{988\}. v: Odesskaya 16 (heterogeneous)\{988\}; Oderzo\{9986\}; CappelleDesprez\{991\}; Capitole\{991\}.
Gli-A1p $\{988\}$. v: Pyrotrix $28\{988\}$; Zagore 99981$\}$.
Gli-A1q\{988\}. v: Akmolinka 1 \{988\}.
Gli-A1r \{988\}. v: Ranniaya 73\{988\}; Barbilla\{9985\}.
Gli-A1s.
Although reported $\{9986\}$, this gene is omitted because it requires further confirmation \{9981\}.
Gli-A1t\{9985\}. v: Jeja del Pais\{9985\}; Milturum 553\{9981\}; Strela\{9981\}.
Gli-A1u\{9985\}. v: Candeal Alcala\{9985\}.
Gli-A1v\{9981\}. v: Japhet\{9981\}; Rouge de Bordeaux\{9981\}.
Gli-A1null \{9984,9987\}. v: Saratovskaya 29 (mutant)\{9987\}; E. Mottin\{9981\}.
Gli-B1\{1607,1125\}. [Gld 1B\{1243,1415\},Gld-B1\{420\},Gld-B2\{420\},Gld-B3\{420\},Gld-B4\{420\},Gld-B5\{420\},Gld-B6\{420\}]. 1B\{1607\}.1BS\{150,634\}. s: CS*/Cheyenne\{634\}. v: CS\{1607,150\}.
Gli-B1a\{988\}. v: CS\{988\}.
Gli-B1b\{988\}. v: Bezostaya 1\{988\}; Carat\{991\}; Marquis\{988\}; Liocorno\{9986\}; Soissons\{991\}.
Gli-B1c\{988\}. v: Siete Cerros 66\{988\}; Prinqual\{991\}; Loreto 99986$\}$.
Gli-B1d\{988\}. v: Dneprovskaya $521\{988\}$; Chopin\{991\}; Petrel\{991\}; Tiberio\{9986\}; Yecora\{9985\}; Neepawa\{995\}; Suneca\{00119\}.
Gli-B1e\{988\}. v: Apexal $\{991\}$; Fournil $\{991\}$; Lutescens $62\{988\}$; Oderzo\{9986\}.
Gli-B1f\{988\}. v: Capitole\{991\}; Cappelle-Desprez\{991\}; Dankowska\{988\}; Maris Freeman\{988\}; Mercia\{998\}.
Gli-B1g\{988\}. v: Champtal\{991\}; Galahad\{988\}; Mara\{9986\}; Sadovo 1\{988\}; Tracy\{991\}.
Gli-B1h\{988\}. v: Cabezorro\{9985\}; Krasnodonka\{988\}; Pepital \{991\}; Rudi 9991$\}$ Tincurrin\{00119\}.
Gli-B1i\{988\}. v: Ghurka\{988\}; Insignia\{988\}.
Gli-B1j\{988\}. v: Cluj 650\{988\}.
Gli-B1k\{988\}. v: Crverkapa\{994\}; De Carolis\{9986\}; Kremena\{988\}; Mentana\{9986\}.
Gli-B1I\{988\}. v: Avrova\{9981\}; Clement\{991\}; Damier\{991\}; Fiocco\{9986\}; Kavkaz\{9981\}.
Gli-B1l encodes secalins ssociated with the 1BL.1RS translocation.
Gli-B1m \{988\}. v: Costantino\{9986\}; Et.d'Choisy\{991\}; Pyrotrix $28\{988\}$.
Gli-B1n\{988\}. v: Intensivnaya\{988\}.
Gli-B1o\{988\}. v: Aragon 03\{9985\}; Levent\{988\}; Pippo\{9986\}; San Rafael \{9985\}.
Gli-B1p 9988$\}$. v: Inia 66\{9985\}; New Pusa $834\{988\}$.
Gli-B1q\{9986\}. v: Gallo\{9986\}; Goelent\{991\}; Goya\{991\}.
Gli-B1r\{995\}. v: Chinook\{995\}; Gazul\{9985\}; Sevillano\{9985\}.
Gli-B1s \{9986\}. v: Salmone\{9986\}; Resistente\{9986\}; E.Mottin\{9981\}.
Gli-B1t\{9985\}. v: Jeja del Pais\{9985\}.
Gli-B1u\{9985\}. v: Negrillo\{9985\}.
Gli-B1v\{9985\}. v: Montjuich\{9985\}.
Gli-B1w\{9981\}. v: Ardica\{9981\}; Barbilla (MCB-1017)\{9981\}.

Gli-B1null $\{9984,9987,991\}$. v: Touzelle\{991\}; Florence Aurora\{9985\}.
In 112 bread wheat cultivars from Argentina, 12 microsatellite alleles plus a null allele were found at the Gli-B1 locus tightly linked to Glu-B3 \{03123\}.
Gli-D1\{121,1125\}. [Gld 1D\{1415\},Gld-D1\{420\},Gld-D2\{420\},Gld-D3\{420\}].
1DS\{121,150,634,1334,1607\}. s: CS*/Cheyenne\{634\}. v: CS\{121,150,1334,1607\}.
Gli-D1a\{988\}. v: CS\{988\}; Marquis\{988\}; Mentana\{9986\}; Prinqual\{991\}; Saratovskaya 36\{988\}.
Gli-D1b\{988\}. v: Bezostaya 1 \{988\}; Cappelle-Desprez\{991\}; Et.d'Choisy \{991\}; Galahad\{988\}.
Gli-D1c $\{988\} . \quad$ v: Skorospelka Uluchshennaya (biotype) $\{988,9982\}$.
Gli-D1d\{988\}. v: De Carolis\{9986\}; Solo\{988\}.
Gli-D1e\{988\}. v: Gerek 79\{988\}.
Gli-D1f\{988\}. v: Carlos\{991\}; Gabo\{988\}; Maris Freeman\{988\}; Orso\{9986\}.
Gli-D1g\{988\}. v: Fournil\{991\}; Ghurka\{988\}; Mironovskaya 808\{988\}; Open\{991\}.
Gli-D1h\{988\}. v: Sadovo I\{988\}; Zlatostrui\{9981\}.
Gli-D1i\{988\}. v: Insignia\{988\}; Napayo (biotype)\{995\}; San Rafael \{9985\};
Tselinogradka\{988\}.
Gli-D1j\{988\}. v: Aubain\{991]; Chinook\{995\}; Inia 66\{9985\}; Petrel\{991\}; Promin\{988\}.
Gli-D1k\{988\}. v: Cargimarec 9991 ; Kremena\{988\}; Mara\{9986\}; Pippo\{9986\}.
Gli-D11\{988\}. v: Artaban\{991\}; Corin\{991\}; Longbow\{988\}.
Gli-D1m\{991\}. v: Heurtebise\{991\}.
Gli-D1n\{981\}. v: Blanquillo de Toledo (MCB-0950)\{9981\}.
Gli-D1null $9984,9987,991\}$. v: Darius\{991\}; Touzelle\{991\}; Saratovskaya 29
(mutant) \{9987\}.
Gli-Agí ${ }^{\mathbf{1}} 1 \mathrm{Ag}^{\mathrm{i}}\{168\}$. ad: Vilmorin 27/Thin. intermedium.
Gli-DT1\{02109\}. 1DS\{02109\}. dv: AUS18913 Ae. tauschii. v: L/18913 (synthetic). A locus designated Gli-DT1 controlling an omega-gliadin of T. tauschii was mapped on the short arm of chromosome 1D between loci Gli-D1 (strictly Gli-Dt1) and Glu-D1 (strictly Glu$\left.D^{t} 1\right), 13.18 \mathrm{cM}$ proximal to the former and 40.20 cM from the latter $\{02109\}$. The only omega-gliadin to date identified as being encoded by this locus, namely T 1 , is of unusually low electrophoretic mobility in SDS-PAGE gels and was formally thought to be a high molecular weight glutenin encoded by the Glu-Dt 1 locus of T. tauschii (see note following the Glu-D1 list in section '74.3.1 Glutenins'). The authors speculate that, due to their similar relative map positions, the loci Gli-A4, Gli-D4, Gli-R3, Gli-S'4 and this locus, Gli-DT1, form a series of 'Gli-4' orthologous loci. However, this should be interpreted in the light of the above discussion on Gli-A3 and Gli-A4.
Gli-DT1a\{02109\}. T1. dv: AUS18913 Ae. tauschii. v: L/18913 (synthetic).
Gli-E1\{781\}. 1ES\{781\}. ad: CS/E. elongata.
Gli- $\boldsymbol{H}^{t} \mathbf{1}\{1037\}$. $1 \mathrm{H}^{\mathrm{t}}\{1037\}$. ad: CS/E. trachycaulum.
In barley, the B and C hordeins are controlled by the Hor2 and Hor1 loci, respectively, which are linked $\{1341\}$ on chromosome 1HS $\{1063,1153\}$. The map distances and homology of the proteins indicate that Hor1, the locus closest to the centromere, is equivalent to the omega-gliadins (Gli-1-1) in Gli-1 \{1338\}.
Gli-R1\{1334\}. [SecR1\{1356\},Sec1\{1336\}]. 1RS\{781,1334,1336,1340\}. ad:
CS/Imperial\{781,1334,1336,1340\}; Holdfast/King II\{1334,1340\}. tr: CS 1DS. Imperial 1RL\{1356\}.
Sec-12 and Sec13 are given as allelic alternatives in 1BL.1RS translocation lines by $\{03132\}$.
Gli- $\boldsymbol{R}^{m} \mathbf{1}\{1340\}$. $1 \mathrm{R}^{\mathrm{m}} \mathrm{S}\{1340\}$. ad: CS/S. montanum.
Gli-Sl ${ }^{\mathbf{1}}\{573\}$. $1 \mathrm{~S}^{1}\{573\}$. ad: CS/Ae. longissima.
Gli-U1\{1335\}. 1U\{1335,150\}. ad: CS/Ae. umbellulata.
Gli-V1\{1026,111\}. 1V\{1026,111\}. ad: CS/D. villosum\{1026\}; Creso/D. villosum\{111\}.

Three alleles at each of the Gli-1-1 (omega gliadin) loci were noted \{1358\}. The complexity of the Gli-1 compound loci is further emphasized by a report of individual genes being separable by recombination, where G1d-1A (a block of gamma and omega genes) is separable by 0.3% from Gld4-1A (omega gliadins) which is in turn, separable by 1.5% from Gld3-1A (omega gliadins) \{1103\}.
Elsewhere, variation was described $\{634,996,1126\}$ and applied in mapping experiments $\{107,196,422,1120,1125,1243\}$. Sixteen combinations of Gli-B1 and 4 combinations of Gli$D 1$ subunits are listed in $\{420\}$. Multiple alleles described in $\{996\}$, number 15 at Gli-A1, 18 at Gli-B1, and 8 at Gli-D1.
The Gli-1 alleles present in 57 Yugoslav wheat varieties were reported in $\{994\}$.

74.3.2.2. Gli-2

Gli-A2\{1334,1125\}. [GId 6A\{1415\}]. 6A\{1334\}.6AS\{1122\}. v: CS.
Gli-A2a\{988\}. v: Cabezorro\{9985\}; CS\{988\}; Insignia\{988\}; Rieti DIV \{9986\}.
Gli-A2b\{988\}. v: Aradi\{9985\}; Bezostaya 1\{988\}; Rivoli\{991\}; Tiberio\{9986\}.
Gli-A2c \{988\}. v: Eagle\{00119\}; Escualo\{9985\}; Loreto\{9986\}; Prinqual\{991\}; Siete Cerros 66\{988\}.
Gli-A2d\{988\}. v: Dneprovskaya $521\{988\} ;$ Kenyon (biobype) \{995\}; Mocho Sobarriba\{9985\}.
Gli-A2e\{988\}. v: Cobra\{991\}; Mentana\{9986\}; Resistente\{9986\}; Sadovo 1\{988\}; Sevillano\{9985\}.
Gli-A2f\{988\}. v: Adalid\{9985\}; Gala\{991\}; Maris Freeman\{988\}; Sistar\{9986\}.
Gli-A2g\{988\}. v: Cappelle-Desprez \{991\}; Ducat\{988\}; Mahissa 1\{9985\}; Mara\{9986\}.
Gli-A2h\{988\}. v: Apollo\{991\}; Basalt\{9981\}; Hereward\{988\}; Montjuich\{9985\}; N. Strampelli\{9986\}.
Gli-A2i\{988\}. v: Krasnodonka\{988\}; Lesostepka 75\{988\}.
Gli-A2j\{988\}. v: Avalon\{9981\}; Camp Remy\{991\}; E. Mottin\{9981\}; Recital\{991\}.
Gli-A2k\{988\}. v: Akmolinka 1\{988\}; Estica\{991\}; Pyrotrix 28\{988\}; Renan\{991\}; Zena\{9986\}.
Gli-A2l\{988\}. v: Chamorro\{9985\}; Champlein \{991\}; Longbow\{988\}.
Gli-A2m\{988\}. v: Marquis\{988\}; Rex\{991\}; Suneca\{00119\}.
Gli-A2n\{988\}. v: Mironovskaya 808\{988\}.
Gli-A2o\{988\}. v: Calatrava\{9985\}; Castan\{991\}; Glenwari 99981$\}$; Lontra\{9986\}; Touzelle\{991\}.
Gli-A2p $\{988\}$. v: Cajeme 71\{9985\}; Capitole\{991\}; Clement\{991\}; Pliska\{988\}; S. Lorenzo\{9986\}; Yecora\{9985\}.
Gli-A2q\{988\}. v: Candeal Alcala\{9985\}; Montcada\{9985\}; Saratovskaya $39\{988\}$.
Gli-A2r\{988\}. v: Genial\{991\}; Open\{991\}; Riband\{988\}.
Gli-A2s $\{988\}$. v: Saratovskaya $36\{998\}$.
Gli-A2t\{988\}. v: Courtot\{991\}; Prostor\{9981\}; Rinconada\{9985\}; Soissons\{991\}.
Gli-A2u\{988\}. v: Aragon 03\{9985\}; Kirgizskaya Yubileinaya\{988\}; Saunders\{995\}; Titien\{991\}.
Gli-A2v\{988\}. v: Kzyl-Bas\{988\}.
Gli-A2w\{988\}. v: Bezenchukskaya 98 (biotype)\{988\}.
Gli-A2x\{988\}. v: Solo\{988\}.
Gli-A2y\{9981\}. v: Gentil Rosso 202\{9981\}; PI 191245\{9981\}.
Gli-A2z\{9986\}. v: Gallo\{9986\}; Giuliana\{9986\}.
Gli-A2aa\{9985\}. v: Navarro $122\{9985\}$.
Gli-A2ab\{9985\}. v: Navarro $150\{9985\}$.
Gli-A2ac \{9981\}. v: Blanquillo de Barcarrota (MCB-0893)\{9981\}.

Gli-A2ad\{9981\}. v: Hembrilla Soria (MCB-1298)\{9981\}.
Gli-A2ae\{9981\}. v: Candeal de S.Lorenzo Parrilla (MCB-0932) \{9981\}.
Gli-A2af\{9981\}. v: Barbilla de Leon (MCB-1292)\{9981\}.
Gli-A2ag\{9981\}. v: Gluclub\{9981\}; Tincurrin\{9981\}.
Gli-A2ah\{9981\}. v: Candeal de Nava del Rey (MCB-0892)\{9981\}.
Gli-A2ai\{9981\}. v: Blanquillo (MCB-0908)\{9981\}.
Gli-A2null $\{9984,9987\}$. v: Saratovskaya 29 (mutant)\{9987\}.
Gli-B2\{1607,1125\}. [Gld 6B\{1415\}]. 6B\{1607\}.6BS\{1122\}. v: CS.
Gli-B2a\{988\}. v: CS\{988\}.
Gli-B2b $\{988\}$. v: Bezostaya 1 1988$\}$; Cobra\{991\}; Gladio\{9986\}; Sideral $\{991\}$.
Gli-B2c \{988\}. v: Courtot\{991\}; Escuala\{9985\}; Gabo\{988\}; Loreto\{9986\};
Manital\{9986\}; Prinqual $\{991\}$; Siete Cerros 66\{988\}; Sinton\{995\}; Yecora\{9985\}.
Gli-B2d\{988\}. v: Akmolinka 1\{988\}; Cesar\{9981\}; Friedland\{991\}; Tselinnaya $20\{988\}$.
Gli-B2e\{988\}. v: Arsenal \{991\}; Veronese\{9986\}; Zlatna Dolina\{994\}.
Gli-B2f\{988\}. v: Basalt\{9981\}; Maris Freeman\{988\}; Master\{991\}.
Gli-B2g\{988\}. v: Capitole\{991\}; Cappelle-Desprez\{991\}; Galahad\{988\}; Forlani\{9986\}.
Gli-B2h\{988\}. v: Castan\{991\}; Mentana\{9986\}; Pane 247\{9985\}; Partizanka\{994\}; Sadovo 1 \{988\}; Sistar\{9986\}.
Gli-B2i\{988\}. v: Insignia\{988\}; Robin\{9981\}.
Gli-B2j\{988\}. v: Farnese\{9986\}; Funo R250\{9986\}; Novosadska Rana 1 \{994\}.
Gli-B2k\{988\}. v: Skala\{988\}.
Gli-B2I\{988\}. v: Clement\{991\}; Longbow\{988\}; Tracy\{991\}.
Gli-B2m\{988\}. v: Mironovskaya $808\{988\}$; Open\{991\}; Renan\{991\}.
Gli-B2n\{988\}. v: Japhet\{9981\}; Rouge de Bordeau\{9981\}; Solo\{988\}.
Gli-B2o\{988\}. v: Hardi \{9981\}; Mara\{9986\}; Odesskaya 16\{988\}; Pippo\{9986\}; Rivoli\{991\}; Slavjanka\{9981\}.
Gli-B2p\{988\}. v: Pliska\{983\}; Champtal\{991\}; Oderzo\{9986\}; Recital \{991\}; Gazul\{9985\}.
Gli-B2q\{988\}. v: Saratovskaya 39\{988\}.
Gli-B2r\{991\}. v: Arminda\{991\}; Estica\{991\}; Genial\{991\}.
Gli-B2s\{988\}. v: Aquila\{9981\}; Saratovskaya 36\{988\}.
Gli-B2t $\{988\}$. v: Tselinogradka 9888 .
Gli-B2u\{988\}. v: Kirgizskaya Yubileinaya\{988\}.
Gli-B2v\{988\}. v: Declic\{991\}; Garant\{991\}; Libellula\{9986\}; Mahissa 1\{9985\}; Poljarka\{988\}.
Gli-B2w\{995,9986\}. v: Palata\{9986\}; Pembina\{995\}; Rieti DIV\{9986\}.
Gli-B2x \{994\}. v: Super Zlatna (biotype) \{994\}; Prostor\{9981\}; 251/83\{9981\}.
Gli-B2y\{9986\}. v: Centauro $\{9986\}$; E. Morandi\{9986\}.
Gli-B2z\{9985\}. v: Maestro\{9985\}.
Gli-B2aa\{9986\}. v: Salmone\{9986\}; E. Mottin\{9981\}.
Gli-B2ab\{991\}. v: Bordier\{9981\}; Orepi\{991\}.
Gli-B2ac\{991\}. v: Scipion\{991\}; Artaban\{991\}; Riol \{991\}; Lontra\{9981\}.
Gli-B2ad\{991\}. v: Champion\{991\}; Chopin\{991\}.
Gli-B2ae\{991\}. v: Priam\{991\}; Et.d'Choisy\{991\}; Campeador\{9985\}; Krajinka (biotype) $\{994\}$.
Gli-B2af\{9985\}. v: Montjuich \{9985\}; Mocho Sobarriba \{9985\}.
Gli-B2ag\{9981\}. v: Jeja del Pais\{9985\}; Barbilla de Leon (MCB-1292)\{9981\}.
Gli-B2ah\{9981\}. v: Rojo de Humanes (MCB-1262)\{9981\}; Grano de Miracolo\{9981\}.
Gli-B2ai\{9981\}. v: Blanquillo (MCB-0908) \{9981\}.
Gli-B2aj\{9981\}. v: Negrete de Malaga (MCB-1754) \{9981\}.
Gli-B2ak\{9981\}. v: HY320\{9981\}; Leader\{9981\}.

Gli-B2al\{9981\}. v: Dankowska\{991\}.
Gli-B2am\{9981\}. v: TM-275\{9981\}; Uralochka\{9981\}.
Gli-B2an\{9981\}. v: Eagle\{9981\}; Glenwari\{9981\}.
Gli-B2ao\{9981\}. v: Olympic\{9981\}; Mokoan\{9981\}.
Gli-B2ap\{9981\}. v: Veda\{9981\}; Magnif 27\{9981\}.
Gli-B2aq\{9981\}. v: Winglen\{9981\}; Isis\{9981\}.
Gli-B2ar\{9981\}. v: Arbon\{9981\}; Roazon\{9981\}.
Gli-B2as \{9981\}. v: Strela\{9981\}; Sredneuralskaya\{9981\}.
Gli-B2at\{9981\}. v: Ranee\{9981\}; Javelin $48\{9981\}$.
Gli-B2null $\{9984,9987\}$. v: Saratovskaya $29\{9987\}$.
Gli-D2\{1334,1125\}. [Gld 6D\{1415\}]. 6D\{1334\}.6DS\{1122\}. v: CS.
Gli-D2a\{988\}. v: CS\{988\}; Maris Freeman\{988\}; Sistar\{9986\}; Tracy\{991\}.
Gli-D2b\{988\}. v: Bezostaya 1\{988\}; Cobra\{991\}; Farnese\{9986\}; Partizanka\{994\}.
Gli-D2c\{988\}. v: Escualo\{9985\}; Eridano\{9986\}; Rieti DIV\{9986\}; Siete Cerros 66\{988\}.
Gli-D2d\{988\}. v: Dneprovskaya $521\{988\}$.
Gli-D2e\{988\}. v: Dollar\{9985\}; Lada\{9981\}; Mironovskaya 808\{988\}; Open\{991\}.
Gli-D2f\{988\}. v: Creneau\{991\}; Kirgizskaya Yubileinaya\{988\}; Rempart\{991\}.
Gli-D2g\{988\}. v: Capprelle-Desprez\{991\}; Futur\{991\}; Galahad\{988\}; Ghurka\{988\}; Mec $\{9986\}$.
Gli-D2h\{988\}. v: Capitole\{991\}; Chinook\{995\}; Eagle\{00119\}; Garant\{991\}; Sadovo $1\{988\}$; Thatcher $\{995\}$.
Gli-D2i\{988\}. v: Insignia 49\{00119\}; Lario\{9986\}.
Gli-D2j\{988\}. v: Arcane\{991\}; Gallo\{9986\}; Gazul\{9985\}; Inia 66\{9985\}; Mentana\{9986\}.
Gli-D2k\{988\}. v: Crvencapa\{944\}; Kzyl-Bas\{988\}; Skala\{988\}.
Gli-D2I. Omitted. No reliable differences compared to existing alleles \{9981\}.
Gli-D2m\{988\}. v: Marquis $\{988\}$; Rex\{991\}; Rinconada\{9985\}; Suneca\{00119\}; Veronese\{9986\}; Yecora\{9985\}.
Gli-D2n\{988\}. v: Castan\{991\}; Champlein\{991\}; Mahissa 1\{9985\}; Mercia\{988\}; Pippo\{9986\}.
Gli-D2o\{988\}. v: Omskaya 12 \{988\}. Note: cultivars Salmone and Resistente, which carry Gli-D2aa \{9981\}, were erroneously given as standards for allele Gli-D2o in \{9986\}.

Gli-D2p $\{988\}$. v: New Pusa $\{988\}$.
Gli-D2q\{988\}. v: Cook\{9981\}; E. Mottin\{9981\}; Fournil\{991\}; Volshebnitsa (biotype)\{988\}; Winglen\{9981\}; Soissons\{991\}.
Gli-D2r\{988\}. v: Kremena\{988\}; Mara\{9986\}; Montcada\{9985\}.
Gli-D2s\{988\}. v: Akmolinka 1\{988\}; Bezenchukskaya $98\{988\}$; Selkirk (biotype)\{995\}.
Gli-D2t\{9986\}. v: Golia\{9986\}; Gabo\{9981\}; Manital \{9986\}; Bokal\{9981\}.
Gli-D2u\{9986\}. v: Loreto\{9986\}; Martial\{991\}; Cibalka\{9981\}.
Gli-D2v\{991\}. v: Epiroux\{991\}; Arbon\{991\}.
Gli-D2w\{9985\}. v: Navarro 150\{9985\}; Javelin\{9981\}; Hopps\{9981\}; Canaleja\{9985\}.
Gli-D2x\{9985\}. v: Montjuich\{9985\}; Blanquillo\{9985\}.
Gli-D2y\{9985\}. v: Candeal Alcala\{9985\}.
Gli-D2z\{9985\}. v: Aragon 03\{9985\}.
Gli-D2aa\{9981\}. v: Salmone\{9981\}; Resistente\{9981\}.
Gli-D2ab\{9981\}. v: Rojo de Boadilla de Campos (MCB-1031)\{9981\}.
Gli-D2ac\{9981\}. v: Albatros\{9981\}.
Gli-D2ad \{9981\}. v: Hembrilla Soria (MCB-1298)\{9981\}.

Gli-D2null\{9984,9987\}. v: Saratovskaya 29 (mutant) \{9987\}.
Gli- $\boldsymbol{g g}^{\boldsymbol{i}} \mathbf{2}\{374\}$. 6Ag ${ }^{\mathbf{i}}\{374\}$. ad: Vilmorin 27/ Thin. intermedium.
Gli-R2\{781\}. [Sec 2\{1336\}]. 2R\{781,1336\}.2RS\{1340\}. ad: CS/Imperial\{781,1336,1340\}; Holdfast/King II\{1340\}.
Gli-R2a\{03116\}. d1 \{03116\}. v: Carnac hexaploid triticale\{03116\}.
Gli-R2b\{03116\}. d2\{03116\}. v: Mostral hexaploid triticale\{03116\}.
Gli-R2c \{03116\}. t1 $\{03116\}$. v: Alamo hexaploid triticale $\{03116\}$.
Gli-R2d\{03116\}. null\{03116\}. v: Triticor hexaploid triticale\{03116\}.
Gli-R2e\{03115\}. t2 $\{03115\}$. v: Tornado hexaploid triticale\{03115\}.
Gli- $\boldsymbol{R}^{\boldsymbol{m}} 2\{1339\}$. $6 \mathrm{R}^{\mathrm{m}}\{1339,1340\}$. ad: CS/S. montanum.
The location of Gli-R2 in S. cereale is thought to have evolved from S. montanum \{1339\} via a translocation between 2R and 6R \{1530\}.
Gli-S ${ }^{\boldsymbol{L}} \mathbf{2}\{573\} . \mathrm{SS}^{1}\{573\}$. ad,su: CS/Ae. longissima.
Gli-U2\{1335\}. 6U\{1335\}. ad: CS/Ae. umbellulata.
Gli-V2\{111\}. 6VS\{111\}. ad: Creso/D. villosum.
Prior to the publication of \{988\}, allelic variation was demonstrated at all of the wheat Gli-2 loci, including 13 alleles at Gli-A2, 11 at Gli-B2, and 10 at Gli-D2, in a study of 39 cultivars \{996\}.
The Gli-2 alleles present in 57 Yugoslav wheat varieties were determined \{994\}.

74.3.2.3. Gli-3

A Gli-3 set of loci coding for omega-type gliadins are located 22 to 31cM proximal to Gli-1 on the short arms of group 1 chromosomes $\{422,1403,589\}$.
Gli-A3\{1403,1119\}. [Gld-2-1A\{1416\}]. 1AS\{1403\}. v: Bezostaya 1.
Each of the following Gli-A3 alleles, apart from Gli-A3d, which is a null, controls one minor omega-gliadin with molecular mass about 41k that occurs in the middle of the omega-region of APAGE fractionation. Gliadins controlled by these alleles differ in their electrophoretic mobility in APAGE in that the fastest of three known Gli-A3-gliadins is controlled by GliA3a and the slowest by Gli-A3c \{9983\}.
Gli-A3a\{9983\}. v: CS, Prinqual, Courtot, Tselinogradka, Bezenchukskaya 98.
Gli-A3b $\{9983\}$. v: Bezostaya 1.
Gli-A3c\{9983\}. v: Anda.
Gli-A3d\{9983\}. Null\{9983\}. v: Saratovskaya 210, Kharkovskaya 6, Richelle.
Gli-B3\{422,1119\}. [Gld-B6\{422\},Glu-B2\{589\}]. 1BS\{422,589\}. s: CS**Thatcher\{422\}. v: Sicco\{589\}.
Gli-B3a\{422,589,1119\}. v: CS.
Gli-B3b\{589\}. v: Sicco.
Gli-B3c $\{422,1119\}$. s: CS*/Thatcher.
Gli-R3\{164\}. 1RS\{164\}. al: Four inbred lines (R2, J14, 8t, E2666).
Gli-S ${ }^{l} \mathbf{3}\{1228\}$. 1^{1} S $\{1228\}$. ad,su: CS/Ae. longissima. ma: In Ae. longissima 2/Ae. longissima 10, three gliadin loci, one glucose phosphate isomerase, and two glutenin loci were mapped relative to one another $\{1228\}$ as follows: Glu-S'1 $15.9 \mathrm{cM}-G p i-S^{l} 1-38 \mathrm{cM}$ -Gli-S'4-7.1 cM - Glu-S 3 - $0.9 \mathrm{cM}-$ Gli-S 1 - $5.6 \mathrm{cM}-$ Gli-S ${ }^{\prime} 5$. Glu-S 1 is located in $1 S^{1} \mathrm{~L}$ and the other loci are in $1 \mathrm{~S}^{\mathrm{l}} \mathrm{S}$.
Gli-V3\{111\}. 4VL\{111\}. ad: Creso/D. villosum.

74.3.2.4. Gli-4

It is not clear how Gli-S ${ }^{l} 4$ and Gli-S ${ }^{l} 5$ relate to the Gli-4 and Gli-5 sets described below.

Gli-A4\{1205\}. 1AS\{1205\}. v: Perzivan biotype 2.
A locus designated Gli-A4 controlling omega-gliadins was mapped at 10 cM proximal to GliA1 on the short arm of chromosome 1A \{1205\}.
However, Metakovsky et al. \{9983\} have since shown that this locus and Gli-A3 are, in fact, the same locus. Furthermore, Dubcovsky et al. \{277\} did not find evidence for the simultaneous presence of both Gli-A3 and Gli-A4 in five 1A or $1 \mathrm{~A}^{\mathrm{m}}$ mapping populations and concluded that Gli-A4 should be considered to be Gli-A3 until conclusive evidence for the former is obtained. For these reasons, the locus Gli-A4 is deleted from the catalogue.

74.3.2.5. Gli-5

A locus designated Gli-5 controlling omega-gliadins was mapped to the short arms of chromosomes 1A and 1B, distal to Gli-1 \{1147\}. The map distance between Gli-B5 and Gli$B 1$ was estimated as 1.4 cM (recombination value of $1.4+/-0.4 \%$), although there was significant variation in recombination values over crosses, ranging from 0% to 5.9% over the six crosses analysed. This variation was attributed to genotypic influence on the frequency of recombination.
Gli-A5\{1147\}. 1AS\{1147\}. v: Salmone. Gli-A5a\{9983\}. Null\{9983\}. v: CS. Gli-A5b 9983$\}$. v: Marquis.

Allele Gli-A5b controls two slow-moving, easily-recognizable omega-gliadins. It is present in all common wheat cultivars having alleles Gli-A1m and Gli-A1r (and, probably, in those having Gli-A1e, Gli-A1l and Gli-A1q), because earlier (for example, in \{988\}) two minor omega-gliadins encoded by Gli-A5b were considered to be controlled by these Gli-A1 alleles \{9983\}.
Gli-B5\{1147\}. 1BS\{1147\}. v: Salmone.
Gli-B5a\{1147\}. v: CS.
Gli-B5b $\{1147\}$. v: Salmone.
In \{988\}, omega-gliadins controlled by Gli-B5 (allele Gli-B5b) were attributed to alleles at the Gli-B1 locus (alleles Gli-B1c, i, k, m, n and o).

74.3.2.6. Gli-6

Gli-A6\{9983,993\}. 1AS\{9983\}.
Gli-A6 was first explicitly described in \{9983\}, but it is now known that it was first observed without designation in \{993\}. There is strong evidence that it is distinct from Gli-A3 and GliA5, mapping distally to Gli-A1, with which it recombines at a frequency of 2-5\%. Currently three alleles are known, of which Gli-A6c is particularly well-described in \{9983\}: the molecular mass of the omega-gliadin controlled by this allele is slightly lower than those of the omega-gliadins controlled by Gli-A3 alleles. In \{988\}, the omega-gliadin controlled by Gli-A6c was attributed to Gli-A1f. Gli-A6c is rather frequent in common wheat and may relate to dough quality (preliminary data \{9983\}). Gli-A6a is null \{9983\}.

Gli-A6a\{9983\}. Null\{9983\}. v: CS, Bezostaya 1.
Gli-A6b\{9983\}. v: Bezenchukskaya 98.
Gli-A6c \{9983\}. v: Courtot, Anda, Mironovskaya 808.

Four new classes of low molecular weight proteins related to gliadins, though not sufficiently similar to be classified as such, have been reported in $\{02113\}$. One of the classes has no close association to previously described wheat endosperm proteins.

74.3.3. Other endosperm storage proteins

Triticin proteins $\{1360\}$ [Triplet proteins $\{1357\}$].
Storage globulins with homology to pea legumins and related proteins in oats, rice and several dicotyledonous species $\{1360\}$.
Tri-A1 $\{1357\},\{1358\}$. 1AS\{1357\}. v: CS.
Tri-A1a. [cs\{1358\}]. v: CS.
Tri-A1b. [h\{1358\}]. v: Hope.
Tri-D1\{1357\},\{707,1358\}. 1DS\{1357\}. v: CS.
Tri-D1a. [cs\{1358\}]. v: CS.
Tri-D1b. [i\{1358\}]. v: India 115.

74.4. Enzyme Inhibitors

74.4.1. Trypsin inhibition

Ti-H1. [Itc $1\{528\}]$. 3H\{528\}. ad: CS/Betzes.
Ti-R1. 3R\{529\}. ad: CS/Imperial.
Ti-A2\{699\}. 5AL\{699\}. v: CS.
Ti-B2\{699\}. 5BL\{699\}. v: CS.
Ti-D2\{699\}. 5DL\{699\}. v: CS.
Ti-D2a\{699\}. v: CS.
Ti-D2b\{699\}. v: Champlein.
Ti-D2c\{699\}. v: Synthetic.
$\mathbf{T i}-\mathbf{A g}^{\mathbf{i}} \mathbf{2}\{699\} .5 \mathrm{Ag}^{\mathbf{i}}\{699\}$. ad: Vilmorin 27/ Thin. intermedium.
Ti-M $\mathbf{M}^{t} 2\{699\}$. $5 \mathrm{M}^{\mathrm{t}}\{699\}$. ad: CS/Ae. mutica.
Ti-R2\{699\}. 5RL\{699\}. ad: CS/Imperial. su: CS/King II.
Ti-S ${ }^{\boldsymbol{L}} \mathbf{2}$ \{699\}. $5^{1} \mathrm{~L}\{699\}$. ad: CS/Ae. sharonensis.
Ti-U2\{699\}. 1U\{699\}. ad: CS/Ae umbellulata.

74.4.2. Subtilisin inhibition

Si-R1\{529\}. 2R\{529\}.2RS\{701\}. ad: CS/Imperial, Holdfast/King II.
Si-H1\{528\}. [Isa 1\{528\}]. 2H\{528\}. ad: CS/Betzes.
Si-B2\{701\}. 1BS\{701\}. su: Bersee \{Koga II\}.
Si-D2\{701\}. 1DS\{701\}. v: Koga II.
Si-H2\{528\},\{701\}. [Ica 1\{528\},Ica 2\{528\}]. 1H\{528\}. ad: CS/Betzes.
Si-R2\{529\},\{701\}. 1R\{529\}.1RS\{701\}. ad: CS/Imperial\{529\}. tr: Gabo 1BL.1RS\{701\}.
Si-S ${ }^{l}\{701\}$. $1^{1}\{701\}$. ad: CS/Ae. longissima.
Si-U2\{701\}. 1U\{701\}. ad: CS/Ae umbellulata.
Considerable genetic variation for $\mathrm{Si}-2$ was noted in $\{701\}$. A chromosome location for $\mathrm{Si}-\mathrm{H} 2$ on 1 HL was inferred in $\{528\}$ but questioned in $\{701\}$.
Three subunits of the wheat tetrameric inhibitor of insect a-amylase, CM1, CM3 and CM16, with homology to the dimeric and monomeric a-amylase inhibitors and the trypsin inhibitors, were located by Southern analysis of cDNAs pCT1, pCT2, and pCT3 to 4A, 4B, 4D; 7A, 7B, 7 D ; and 4A, 4B, 4D, respectively $\{427\}$.
Genes encoding proteins which inhibit the action of mammalian and insect, but not cereal, aamylases, were located in chromosomes 3BS, 3DS and 6DS of Chinese Spring \{1260\}. Also,
genes encoding inhibitors of insect a-amylases were located in H. chilense chromosomes $4 H^{\mathrm{ch}}$ and $7 \mathrm{H}^{\mathrm{ch}}\{1262\}$.

74.4.3. Inhibitors of alpha-amylase and subtilisin

Isa-A1\{908\}. 2AL\{908\}. v: CS.
Isa-A1a\{908\}. v: CS.
Isa-A1b $\{908\}$. Null allele. v: Cajeme 71.
Isa-B1\{908\}. 2BL\{908\}. v: CS.
Isa-B1a\{908\}. v: CS.
Isa-B1b\{908\}. v: Bihar.
Isa-D1\{908\}. 2DL\{908\}. v: CS.
Orthologous genes were identified in Ae. speltoides and T. timopheevii \{908\}. All durum wheats investigated had the genotype Isa-A1b, Isa-B1b.

74.4.4. Inhibitors (dimeric) of heterologous alpha-amylases

Chromosome 3BS has duplicated loci controlling two dimeric inhibitors of exogenous aamylases, one known as 0.53 or Inh I \{1260\}, and the other as WDA I-3 \{1260\}.
Chromosome 3DS has a homoeologous locus controlling a dimeric inhibitor of exogenous aamylases, known as 0.19 or Inh III \{1260,0124\}, that is closely related to $0.53 / \mathrm{Inh}$ I.
Intervarietal polymorphism for the WDA-3 protein was identified by isoelectric focussing of water-soluble endosperm proteins \{0124\}. This was interchromosomely mapped on 3BS using both a DH population of Cranbrook/Halberd, and a set of RILs of Opata 85/W-7984 (ITMI population) $\{0125\}$.
Iha-B1.1\{1260\}. 3BS\{1260\}. v: CS\{1260\}.
Iha-B1.2\{0124\}. 3BS\{0124\}. v: CS\{0124\}.
Iha-B1.2a\{0124\}. v: CS\{0124,0125\}.
Iha-B1.2b\{0125\}. Null allele. v: Cadoux $\{0125\}$; Cranbrook $\{0125\}$; Tasman\{0125\}.
Iha-D1\{1260\}. 3DS\{1260\}. v: CS\{1260\}.

74.5. Other proteins

74.5.1. Lipopurothionins

Pur-A1\{351\}. 1AL\{351\}. v: CS\{351\}.
A PCR marker specific for Pur-A1 was developed in $\{9976\}$.
Pur-B1\{351\}. 1BL\{351\}. v: CS\{351\}.
A PCR marker specific for Pur-B1 was developed in $\{9976\}$.
Pur-D1\{351\}. 1DL\{351\}. v: CS\{351\}.
A locus in chromosome 5DS affects the level of lipopurothionin $\{351\}$.
PCR marker specific for Pur-D1 was developed in $\{9976\}$.
Pur-R1. 1RL $\{1261\} .=$ IRS,1BL. ad: CS/Imperial. su: Several 1R(1B) lines. tr: Aurora, Kavkaz.
A PCR marker specific for Pur-R1 was developed in $\{9976\}$.

74.5.2. Lectins

Lec-A1. 1AL\{1427\}. v: CS.
Lec-B1. 1B\{1427\}. s: CS*/Hope 1B.
Lec-D1. 1DL\{1427\}. v: CS.

Lec-U1. 1U\{1427\}. ad: CS/Ae. umbellulata.

74.5.3. Iodine binding factor

A monomeric water soluble protein from mature grain which preferentially binds iodine \{818\}.
Ibf-A1\{818\}. 5AL\{818\}. v: CS.
Ibf-A1a\{818\}. v: CS.
Ibf-A1b\{818\}. v: Cappelle-Desprez.
Ibf-A1c\{818\}. v: Hope.
Ibf-A1d\{818\}. v: Chris.
Ibf-A1e\{818\}. v: Sears' Synthetic.
Ibf-B1\{818\}. 5BL\{818\}. v: CS.
Ibf-B1a\{818\}. v: CS.
Ibf-B1b\{818\}. v: Cappelle-Desprez.
Ibf-B1c\{818\}. v: Ciano 67.
Ibf-B1d\{818\}. v: Sears' Synthetic.
Ibf-D1\{818\}. 5DL\{818\}. v: CS.
Ibf-D1a\{818\}. v: CS.
Ibf-D1b\{818\}. v: Cappelle-Desprez.
Ibf-D1c\{818\}. v: Purple Pericarp.
Ibf-D1d\{818\}. v: Sears' Synthetic.
$\boldsymbol{I b f}-\boldsymbol{A g}^{\boldsymbol{i}} \mathbf{1}\{818\} .5 \mathrm{Ag}^{\mathbf{i}}\{818\}$. ad: Vilmorin/Thin. intermedium.
Ibf-E1\{818\}. 5EL\{818\}. ad: CS/E. elongata.
Ibf-H1\{818\}. 4H\{818\}. ad: CS/Betzes.
Ibf-R1\{818\}. 5RL\{818\}. ad: CS/Imperial, CS/KingII.
Ibf-S $\boldsymbol{S}^{1}\{818\}$. $5 S^{1}\{818\}$. ad: CS/Ae. sharonensis.
Ibf-U1\{818\}. 5U\{818\}. ad: CS/Ae. umbellulata.

74.5.4. Water soluble proteins

WSP-1 are monomeric grain endosperm proteins identified by their high pI's $\{817\}$.
Wsp-A1\{817\}. 7AL\{817\}. v: CS.
Wsp-A1a\{817\}. v: CS.
Wsp-A1b\{817\}. v: Huntsman.
Wsp-A1c\{817\}. v: Норе.
Wsp-A1d\{817\}. v: Sicco.
Wsp-A1e\{817\}. v: Condor.
Wsp-B1\{817\}. 7BL $\{817\}$. v: CS.
Wsp-B1a\{817\}. v: CS.
Wsp-B1b\{817\}. v: Норе.
Wsp-B1c\{817\}. v: Condor.
Wsp-D1\{817\}. 7DL \{817\}. v: CS.
Wsp-D1a\{817\}. v: CS.
Wsp-D1b\{817\}. v: Sears' Synthetic IPSR 1190903.
Wsp-D1c $\{893\}$. v: T4 = Agatha\{893,890\}; Indis 890,892$\}$.
Wsp-E1\{817\}. 7E\{817\}. ad: CS/ E. elongata.
Wsp-H1\{817\}. 7H\{817\}. ad: CS/Betzes.
Wsp-H $\boldsymbol{H}^{\text {ch }} 1\{817\} .7 \mathrm{H}^{\text {ch }}\{817\}$. ad: CS/H. chilense.
Wsp-S ${ }^{\boldsymbol{1}} \mathbf{1}\{817\} .7 \mathrm{~S}^{1}\{817\}$. ad: CS/Ae. sharonensis.
Wsp-V1\{817\}. 7V\{817\}. ad: CS/D. villosum.

74.5.5. Salt soluble globulins

GLO-1 are endosperm proteins ($23-26 \mathrm{kDa}$) soluble in salt but not in water $\{455\}$.
Glo-A1\{455\}. 1AS\{455\}. v: CS. ma: Distally located: Glo-A1(distal) - 5.2cM - GliA1 \{1077\}.
Glo-B1\{455\}. 1BS\{455\}. v: CS.
Glo-D1\{455\}. 1DS\{455\}. v: CS. ma: Distally located: Glo-D1(distal) - 2.9cM - GliD1 \{1077\}.
Glo-E1\{455\}. 1ES\{455\}. ad: CS/E. elongata.
Glo-R1\{455\}. 1RS\{455\}. ad: CS/Imperial. su: 1B/(1R), eg., Salzmunde 14/44.

74.5.6. Waxy proteins

Waxy protein (granule-bound starch synthase = ADP glucose starch glycosyl transferase, EC 2.41 .21 = GBSSI) is tightly bound within endosperm starch granules and is involved in the synthesis of amylose \{1616\}. Waxy variants, characterised by starch granules containing increased amylopectin and reduced amylose, are preferred for Japaness white salted or "udon" noodles $\{1650\}$. Similar waxy phenotypes are controlled by orthologous genes in barley, maize and rice but are not known to occur in rye \{725\}. All combinations of the null alleles were produced in Chinese Spring \{0018\}. Partial genomic clones of various diploid, tetraploid, and hexaploid wheats were sequenced $\{0278,0279\}$.
Wx-A1 \{180,1053\}. [Xwx-7A\{179,180\},Wx-B1\{1053,1054\}]. 7AS\{180,1053\}. v: CS. ma:
Variation in the microsatellite gene Xsun1-7A provides a co-dominant marker for this locus\{0116\}.
Wx-A1a\{1054\}. [Wx-B1a\{1054\}]. v: CS; Hoshuu.
Wx-A1b\{1054\}. [Wx-B1b\{1054\}]. Null allele. v: Kanto 79; Kanto 107
Shirodaruma\{1617\}; Sturdy\{1617\}. tv: Asrodur\{0111\}; MG826\{03101\}; A variant allele was present in one Iranian and one Italian accession $\{03101\}$.
Wx-A1c\{1617\}. v: QT105\{1617\}; WB6\{1617\}.
Wx-A1d\{1616\}. tv: T. dicoccoides KU 8937B\{1616\}.
Wx-A1e\{1616\}. tv: T. durum KU 3655 and KU 3659\{1616\}. The complete genomic sequences for the $W x$-A1a allele from CS $\{0073\}$ and the cDNA sequence for the $W x-A 1 b$ allele from Kanto $107\{0075\}$ were determined.
Wx-B1\{180,1053\}. [XWx-4B\{179,180\},XWx-4A\{961\},Wx-A1\{1053,1054\}]. 4AL\{180,1054\}.
v: CS. tv: A variant allele was present in three accessions $\{03101\}$.
Wx-B1a\{1054\}. [Wx-A1a\{1054\}]. v: CS; Joshuu.
The complete genomic sequence for $W x-B 1 a$ from CS was determined $\{0073\}$.
$\boldsymbol{W x}-\mathbf{B 1 b}\{1054\}$. [Wx-A1b\{1054\}]. Null allele. v: Kanto 79; Kanto 82; Kanto 107; Norin 98; Gabo\{1617\}; Satanta\{1617\}; For list of Australian wheats, see\{1650\}. tv: Blaquetta (BG-13701)\{0111\}.
Wx-B1c\{1617\}. v: Cikataba\{1617\}; Junbuk 12\{1617\}.
Wx-B1d\{1616\}. tv: T. durum KU 4213D\{1616\}; KU 4224C\{1616\}.
Wx-B1e\{0027\}. v: Blue Boy II\{0027\}; Canthatch\{0027\}; Eureka\{0027\}; Gotz\{0027\}; Norin 44\{0027\}; Turkey Red\{0027\}.
Wx-B1f\{0111\}. tv: BG-12413\{0111\}; BG-12415\{0111\}.
Wx-D1\{180,1053\}. [XWx-7D\{179,180\}]. 7DS\{180,1053\}. v: CS.
Wx-D1a\{1054\}. v: CS.
$\boldsymbol{W x}$-D1b $\{1617\}$. Null allele. v: Bai Huo (Baihuomai)\{1617\}. ma: DHWx12 \{0117\}; STS marker Xsun1-7D produces a distinct band of about 260bp (compared with the
standard 840bp), indicative of a smaller PCR product, but the gene is nonfunctional $\{0116,0117\}$; Xsun4(Wx)-7D is a perfect marker $\{0118\}$.
Wx-D1c\{1617\}. v: Scoutland\{1617\}.
Wx-D1d\{0118\}. v: K107wx1\{0118\}; EMS mutants\{0118\}; One Iranian and one Italian accession\{03101\}.
Wx-D1e\{0117\}. Null allele\{0117\}. v: NP150\{0117\}. STS marker Xsun1-7D fails to produce a PCR product \{0117\}
Wx-D1f. [Wx-d1e\{0234\}]. v: Tanikei A6599-4\{0234\}; Relative to Kanto 107, Tanikei A6599-4 carries an alanine to threonine substitution at position 258 in the mature protein\{0234\}.
Various hard and soft wheats with the alleles $W x-A 1 b, W x-B 1 b$ and $W x-D 1 b$ are listed in \{0304\}.

Lists of cutivars, lines and landraces of tetraploid and hexaploid wheats with different, mostly null, alleles at the $W x$ loci are given in $\{9910,9911,9912,1053,1054,9913,9915$, 9916,1650,9917\}.
The complete genomic sequence for $W x$-D1a from CS $\{0073\}$ and the cDNA sequence for the $W x$-D1b allele from Bai Huo $\{0075\}$ were determined.
Isolation of a wheat cDNA encoding $W x-A 1$ and $W x-D 1$ was reported in $\{0123\}$ and $\{0167\}$, respectively. Isolation of genomic sequences for the genes encoding granule-bound starch synthase (GBSSI or Wx) in T. monococcum, Ae. speltoides and T. tauschii was reported in $\{0168\}$. Cloning of a second set of GBSSI or waxy genes, GBSSII, which were shown to be located on chromosomes 2AL, 2B and 2D, was reported in \{0167\}.
Various hard and soft wheats with the alleles $W x-A 1 b, W x-B 1 b$ and $W x-D 1 b$ are listed in \{0304\}.

74.5.7. Starch granule proteins

The proteins, designated SGP-1, are starch synthases, encoded by SsII-A1, SsII-B1 and SsIID1 \{0042\}.
Sgp-A1\{1615\}. 7AS\{1615\}. v: CS.
Sgp-A1a\{1615\}. v: CS.
Sgp-A1b\{1615\}. Null allele. v: Chosen 30, Chosen 57.
Sgp-A1c\{1615\}. v: Hua Non 9.
Sgp-B1\{1615\}. 7BS\{1615\}. v: CS.
Sgp-B1a\{1615\}. v: CS.
Sgp-B1b\{1615\}. Null allele. v: K79.
Sgp-B1c\{1615\}. v: Gnatruche.
Sgp-B1d\{1615\}. v: Waratah.
Sgp-D1\{1615\}. 7DS\{1615\}. v: CS.
Sgp-D1a\{1615\}. v: CS.
Sgp-D1b\{1615\}. Null allele. v: T116.
Sgp-A2\{1615\}. v: CS.
Sgp-B2\{1615\}. v: CS.
Sgp-D2\{1615\}. v: CS.
Sgp-A3\{1615\}. 7AS\{1615\}. v: CS.
Sgp-A3a\{1615\}. v: CS.
Sgp-A3b\{1615\}. Null allele. v: Norin 61.
Sgp-B3\{1615\}. 7BS\{1615\}. v: CS.
Sgp-B3a\{1615\}. v: CS.
Sgp-B3b $\{1615\}$. Null allele. v: Crest.
Sgp-B3c\{1615\}. v: Spica.

Sgp-D3\{1615\}. 7DS\{1615\}. v: CS.
The proteins, designated SGP-3, are identical to wheat starch synthase I, encoded by SsI-A1, SsI-A2 and SsI-D1 \{0041\}.

A triple null stock (SGP-1 null wheat) is reported in \{0137\}. Deletion mapping indicated that the gene order on the 7S arms is; centromere - Sgp-1-Sgp-3-Wx\{1615\}.

74.5.8. Puroindolines and grain softness protein

Puroindolines a and b are the major components of friabilin, a protein complex that is associated with grain texture (see 'Grain Hardness'). The name 'puroindoline' and the complete amino acid sequence of puroindoline a were given in $\{0382\}$ from cv Camp Remy. Hard grain texture in hexaploid wheat results from unique changes in the puroindoline amino acid sequence or, currently, four null forms $\{0295\}$ of the completely linked genes (max. map distance 4.3 cM) $\{452\}$. Tetraploid (AABB, AAGG) wheats lack puroindolines and are consequently very hard $\{03103\}$. A searchable database of wheat varieties and their puroindoline genotype is available at http://www.wsu.edu/~wwql/php/puroindoline.php. Grain softness protein- 1 is a closely related gene which is closely located to the puroindoline genes $\{03111,1185\}$. 'GenBank' and 'dbEST' refer to sequence databases available at NCBI (also available throught EMBL and DDB).
Pina-A1 $\{03103,03108,03104\}$. dv: T. urartu unspecified accession $\{03103\}$; TA763(GenBank AJ302094)\{03108,03104\}; TA808(GenBank AJ302095) 003108,03104$\}.$
Pina-D1\{452\}. 5DS\{452\}. v: CS.
Pina-D1a\{452\}. v: Bellevue\{0249\}; Courtot\{0249\}; Fortuna\{0249\}; Galaxie\{0249\};
Heron\{1035\}; Soissons\{0249\}. v2: Aurelio Pinb-D1a\{0249\}; Bezostaja PinbD1b\{0249\}; Bilancia Pinb-D1a\{0249\}; Bolero Pinb-D1a\{0249\}; Brasilia PinbD1b\{0249\}; Centauro Pinb-D1a\{0249\}; Cerere Pinb-D1b\{0249\}; CS PinbD1a\{452,0249\}; Colfiorito Pinb-D1b\{0249\}; Cologna 21 Pinb-D1b\{0249\}; David PinbD1b\{0249\}; Democrat Pinb-D1b\{0249\}; Etruria Pinb-D1b\{0249\}; Francia PinbD1b\{0249\}; Gemini Pinb-D1b\{0249\}; Genio Pinb-D1b\{0249\}; Gladio PinbD1b\{0249\}; Lampo Pinb-D1a\{0249\}; Leone Pinb-D1a\{0249\}; Leopardo PinbD1a\{0249\}; Libero Pinb-D1a\{0249\}; Livio Pinb-D1a\{0249\}; Marberg PinbD1b\{0249\}; Mentana Pinb-D1a\{0249\}; Mieti Pinb-D1b\{0249\}; Mose Pinb-D1a\{0249\}; Neviana Pinb-D1a\{0249\}; Newana Pinb-D1b\{0249\}; Oscar Pinb-D1a\{0249\}; Pandas Pinb-D1b\{0249\}; Pascal Pinb-D1b\{0249\}; Penawawa Pinb-D1a\{03104\}; Sagittario Pinb-D1b\{0249\}; Salgemma Pinb-D1b\{0249\}; Saliente Pinb-D1b\{0249\}; Salmone Pinb-D1b\{0249\}; Serena Pinb-D1a\{0249\}; Serio Pinb-D1b\{0249\}; Veda PinbD1b\{0249\}; Zena Pinb-D1b\{0249\}. dv: Ae. tauschii upspecified accession (GenBank AJ249935) \{03103\}; TA1583 (GenBank AY252029) Pinb-D1a, Gsp-D1b\{03105\}; TA2475 (GenBank AY252037) Pinb-D1i, Gsp-D1b\{03105\}; TA1599 (GenBank AY252011) Pinb-D1j, Gsp-D1g\{03105\}; TA1691 (GanBank AY252013) Pinb-D1j, Gsp-D1h\{03105\}.
Pina-D1a is present in all soft hexaploid wheats and possibly all hard hexaploid wheats that carry a hardness mutation in puroindoline b $\{452,1035,0082,0204,0295\}$.
Pina-D1b $\{1035\}$. Null allele. i: Falcon $/ 7^{*}$ Heron, Heron $/ 7^{*}$ Falcon $\{03109\}$; Gamenya sel. $\{0298,0203\}$; Heron/7* ${ }^{*}$ Falcon sel. $\{0298,0203\}$. v: Butte $86\{1035\}$; Eridano\{0249\}; Falcon\{1035\}; Kalyansona\{0249\}; Super X\{0249\}; Yecora Rojo\{0204\}. v2: Amidon Pinb-D1a\{0249\}; Ciano Pinb-D1a\{0249\}; Dorico Pinb-D1a\{0249\}; Fortuna (USA) Pinb-D1a\{0249\}; Glenman Pinb-D1a\{0249\}; Golia Pinb-D1a\{0249\}; Guadalupe PinbD1a\{0249\}; Barra Pinb-D1a\{0249\}; Inia 66 Pinb-D1a\{0249\}; Indice Pinb-D1a\{0249\}; Jecora Pinb-D1a\{0249\}; Manital Pinb-D1a\{0249\}; Mendos Pinb-D1a\{0249\}; Padus Pinb-D1a\{0249\}; Prinqual Pinb-D1a\{0249\}; Sibilia Pinb-D1a\{0249\}.

Present only in some hard hexaploid wheats. Pina-D1b is associated with harder texture than Pinb-D1b \{0177,0206\}.
Pina-D1c\{03105\}. dv: Ae. tauschii TA2369 (GenBank AY252031) Pinb-D1h, Gsp-D1c; TA2527 (GenBank AY252015) Pinb-D1h, Gsp-D1e; TA2536 (GenBank AY251998) Pinb-D1i, Gsp-D1d\{03105\}.
Pina-D1d\{03105\}. dv: Ae. tauschii PI452131 (GenBank AJ302098) Pinb-D1i\{03104\}; PI554318 (GenBank AJ302099) Pinb-D1k\{03104\}; TA1649 (GenBank AY251963) Pinb-D1h, Gsp-D1f\{03105\}; TA2374 (GenBank AY251948) Pinb-D1i, GspD1d\{03105\}; TA2521 (GenBank AY252042) Pinb-D1i, Gsp-D1e\{03105\}; TA2455 (GenBank AY252022) Pinb-D1i, Gsp-D1f\{03105\}.
Pina-D1e\{03105\}. dv: Ae. tauschii TA2458 (GenBank AY252034) Pinb-D1i, GspD1d\{03105\}; TA2495 (GenBank AY252041) Pinb-D1i, Gsp-D1e\{03105\}.
Pina-D1f\{03105\}. dv: Ae. tauschii TA2436 (GenBank AY251998) Pinb-D1i, GspD1d\{03105\}.
Pina- $\boldsymbol{A}^{\boldsymbol{m}} \mathbf{1}\{0083\}$. $5 \mathrm{~A}^{\mathrm{m}} \mathrm{S}\{0083\}$. dv: T. monococcum DV92(cultivated), G3116 (spp. aegilopoides) (GenBank AJ242715)\{0083\}; unspecified acession (GenBank AJ249933)\{03103\}; PI277138 (GenBank AJ302093)\{03104\}; PI418582 (GenBank AJ302092)\{03104\}; T. monococcum spp. monococcum TA2025, TA2026, TA2037\{03108\}; T. monococcum spp. aegilopoides TA183, TA291, TA546, TA581\{03108\}.

In T. monococcum Pina- $A^{m} 1$ is completely linked to $G s p-A^{m} 1\{0083\}$.
Pina-S1 \{03108\}. dv: Ae. speltoides PI393494 (GenBank AJ302096)\{03104\}; PI369616 (GenBank AJ302097)\{03104\}; Ae. speltoides spp. speltoides TA2368, TA1789\{03108\}; Ae. speltoides spp. ligustica TA1777\{03108\}.
Pina-S ${ }^{\boldsymbol{b}} \mathbf{1}\{03108\}$. dv: Ae. bicornis spp. typica TA1954, TA1942\{03108\}.
Pina- $\mathbf{S}^{1} \mathbf{1}\{03108\}$. dv: Ae. longissima spp. longissima TA1912\{03108\}; Ae. longissima spp. nova TA1921\{03108\}.
Pina- $\boldsymbol{S}^{\boldsymbol{s} 1} 1\{03108\}$. dv: Ae. searsii TA1837, TA1355\{03108\}.
Pina-S ${ }^{\text {sh }} 1\{03108\}$. dv: Ae. sharonensis TA1999\{03108\}.
Pinb-A1 $\{03108,03104\}$. dv: T. urartu TA763 (GenBank AJ302103)\{03104\}; TA808 (GenBank AJ302104) $\{03108,03104\}$.
Pinb-D1. 5DS 452$\}$. v: CS 452$\}$; Capitole (GenBank X69914)\{03110\}.
Pinb-D1a\{452\}. v: Hill 81\{452\}. v2: Adder Pina-D1a\{0317\}; Amidon PinaD1b\{0249\}; Aurelio Pina-D1a\{0249\}; Barra Pina-D1b\{0249\}; Bilancia PinaD1a\{0249\}; Bolero Pina-D1a\{0249\}; Centauro Pina-D1a\{0249\}; CS PinaD1a\{452,0249\}; Ciano Pina-D1b\{0249\}; Dorico Pina-D1b\{0249\}; Fortuna (USA) Pina-D1b\{0249\}; Glenman Pina-D1b\{0249\}; Golia Pina-D1b\{0249\}; Guadalupe PinaD1b\{0249\}; Inia 66 Pina-D1b\{0249\}; Jecora Pina-D1b\{0249\}; Idice Pina-D1b\{0249\}; Karl Pina-D1a\{0317\}; Lampo Pina-D1a\{0249\}; Leone Pina-D1a\{0249\}; Leopardo Pina-D1a\{0249\}; Libero Pina-D1a\{0249\}; Livio Pina-D1a\{0249\}; Manital PinaD1b\{0249\}; Mendos Pina-D1b\{0249\}; Mentana Pina-D1a\{0249\}; Mose PinaD1a\{0249\}; Neviano Pina-D1a\{0249\}; Oscar Pina-D1a\{0249\}; Padus PinaD1b\{0249\}; Penawawa Pina-D1a\{03104\}; Prinqual Pina-D1b\{0249\}; Serena PinaD1a\{0249\}; Sibilia Pina-D1b\{0249\}; Sigyn II Pina-D1a\{0317\}. dv: Ae. tauschii unspecified accession (GenBank AJ249936)\{03103\}; TA1583 (GenBank AY251981) Pina-D1a, Gsp-D1b\{03105\}.
Pinb-D1a is present in all soft hexaploid wheats and possibly all hard hexaploid wheats carrying the Pinb-D1b, -D1c, -D1d, -D1e, or -D1f mutations \{452,1035,0082,0204,0295\}.
Pinb-D1b\{452\}. 5DS\{452\}. v: Thatcher\{0204\}; Wanser\{452\}; hard component of Turkey $\{0204\}$. i: Paha**2/Early Blackhull/5*Paha 0298,0203$\}$; Early Blackhull der. $/ 5^{*}$ Nugaines sel. $\{0298,0203\}$; hard sib sel. from Weston $\{03107\}$. s: CS*7/Cheyenne 5D\{452\}. v2: Bastion Pina-D1a\{0317\}; Bezostaya Pina-D1a\{0249\};

Brasilia Pina-D1a\{0249\}; Cerere Pina-D1a\{0249\}; Colfiorito Pina-D1a\{0249\}; Cologna 21 Pina-D1a\{0249\}; David Pina-D1a\{0249\}; Democrat Pina-D1a\{0249\}; Etruria Pina-D1a\{0249\}; Francia Pina-D1a\{0249\}; Gemini Pina-D1a\{0249\}; Genio Pina-D1a\{0249\}; Gladio Pina-D1a\{0249\}; Marberg Pina-D1a\{0249\}; Mieti PinaD1a\{0249\}; Newana Pina-D1a\{0249\}; Pandas Pina-D1a\{0249\}; Pascal PinaD1a\{0249\}; Sagittario Pina-D1a\{0249\}; Salgemma Pina-D1a\{0249\}; Saliente PinaD1a\{0249\}; Salmone Pina-D1a\{0249\}; Serio Pina-D1a\{0249\}; Veda Pina-D1a\{0249\}; Zena Pina-D1a\{0249\}.
Pinb-D1b is a "loss-of-function" mutation resulting from the replacement of a glycine by a serine at position $46\{452\}$.
Pinb-D1c\{0082\}. v: Avle\{0082\}; Bjorke\{0082\}; Portal \{0082\}; Reno\{0082\}; Tjalve\{0082\}.
Pinb-D1c is a "loss-of-function" mutation resulting from the replacement of a leucine by a proline at position $60\{0082\}$.
Pinb-D1d\{0082\}. v: Bercy\{0082\}; Mjolner\{0082\}.
Pinb-D1d is a "loss-of-functgion" mutation resulting from the replacement of a tryptophan by a arginine at position $44\{0082\}$.
Pinb-D1e\{0204\}. v: Gehun\{0204\}; Canadian Red\{0204\}; Chiefkan\{0204\}.
Pinb-D1e is a "loss-of-function" mutation resulting from the replacement of a tryptophan by a stop codon at position 39 \{0204\}.
Pinb-D1f\{0204\}. v: the hard component of Utac $\{0204\}$.
Pinb-D1f is a "loss-of-function" mutation resulting from the replacement of a tryptophan by a stop codon at position 44 \{0204\}.
Pinb-D1g\{0204\}. v: Andrews\{0204\}.
Pinb-D1g is a "loss-of-function" mutation resulting from the replacement of a cysteine by a stop codon at position 56 \{0204\}.
Pinb-D1h\{03105\}. dv: Ae. tauschii TA2369 Pina-D1c, Gsp-D1c\{03105\}; TA2527 PinaD1c, Gsp-D1e\{03105\}; TA1649 Pina-D1d, Gsp-D1f\{03105\}.
Pinb-D1i\{03105\}. dv: Ae. tauschii TA2475 (GenBank AY251989) Pina-D1a, GspD1b\{03105\}; TA2536 (GenBank AY251993) Pina-D1c, Gsp-D1d\{03105\}; TA2374 (GenBank AY251948) Pina-D1d, Gsp-D1d\{03105\}; TA2512 (GenBank AY251992) Pina-D1d, Gsp-D1e\{03105\}; TA2455 (GenBank AY251972) Pina-D1d, GspD1f\{03105\}; TA2458 (GenBank AY251986) Pina-D1e, Gsp-D1d\{03105\}; TA2495 (GenBank AY251991) Pina-D1e, Gsp-D1e; TA2436 Pina-D1f, Gsp-D1d\{03105\}.
Pinb-D1j\{03105\}. dv: Ae. tauschii TA1599 Pina-D1a, Gsp-D1g\{03105\}; TA1691 PinaD1a, Gsp-D1h\{03105\}.
Pinb-D1k. dv: Ae. tauschii PI554318 (GenBank AJ302108) Pina-D1d\{03104\}.
Pinb- $\boldsymbol{A}^{\boldsymbol{m}} \mathbf{1}\{0083\}$. $5 \mathrm{~A}^{\mathrm{m}} \mathrm{S}\{0083\}$. dv: T. monococcum DV92 (cultivated), G3116 (spp. aegilopoides (GenBank AJ242716)\{0083\}; unspecified accession (GenBank AJ249934)\{03103\}; is identical to allele Pina-D1h\{03105\}; PI277138 (GenBank AJ302102)\{03104\}; PI418582 (GenBank AJ302101)\{03104\}.
In T. monococcum Pinb- $A^{m} 1$ is 0.1 cM proximal to Pina $-A^{m} 1$ and both loci are less than 36 kb apart $\{0083\}$.
Pinb-S1\{03108\}. dv: Ae. speltoides PI393494 (GenBank AJ302105)\{03104\}; PI369616 (GenBank AJ302106)\{03104\}; Ae. speltoides spp. speltoides TA2368, TA1789\{03108\}; Ae. speltoides spp. ligustica TA1777\{03108\}.
Pinb- $\boldsymbol{S}^{\boldsymbol{b}} \mathbf{1}\{03108\}$. dv: Ae. bicornis spp. typica TA1954, TA1942\{03105\}.
Pinb- $\mathbf{S}^{\boldsymbol{l}} \mathbf{1}\{03108\}$. dv: Ae. longissima spp. longissima TA1912\{03108\}; Ae. longissima spp. nova TA1921\{03108\}.
Pinb- $\boldsymbol{S}^{\boldsymbol{S}} \mathbf{1}\{03108\}$. dv: Ae. searsii TA1837, TA1355\{03105\}.
Pinb- $\mathbf{S}^{\text {sh }} \mathbf{1}\{03108\}$. dv: Ae. sharonensis TA1999\{03105\}.

Pinb-D1b, Pinb-D1c, Pinb-D1d, Pinb-D1e, Pinb-D1f, or Pinb-D1g are present in hard hexaploid wheats not carrying the Pina-D1b (null) mutation $\{452,1035,0082,0204\}$.

Wheats with Pinb-D1b were slightly softer and a little superior to those with Pina-D1b in milling and bread-making characteristics although there was considerable overlap $\{0206\}$.
Transgenic rice with the Pina-D1a and Pinb-D1a alleles possessed softer grain $\{0207\}$.
Genotypes for a selection of North American wheats are given in \{0204\}.

74.5.9. Grain softness protein

Gsp-1\{1185\}.
Gsp-A1 \{614\}. [GSP\{614\}]. 5A\{614,0383\}. v: CS\{614,0383\}; Rosella (GenBank
AF177218)\{0383\}.
In $\{1185\}$ partial-sequence clone TSF61 from cv Soft Falcon (GenBank X80380) is identical to this allele.
Gsp-B1 \{614\}. [GSP\{614\}]. 5B\{614\}. v: CS\{614\}; Glenlea\{0385\}.
In $\{1185\}$ sequence of clone TSF33 from cv Soft Falcon (GenBank X80379) is identical to this allele, as are ESTs for cv CS (dbEST BJ235798) and cv CNN (dbEST BE423845).
Gsp-D1\{614\}. [GSP\{614\}]. 5DS\{614\}. v: CS\{614\}; Glenlea\{0385\}. dv: Ae. tauschii CPI1110799 (GenBank AF177219)\{0383\}. ma: Co-segregation of Gsp-D1 and Ha\{614\}. In $\{1185\}$ sequence of clone TSF69 from cv Soft Falcon (GenBank S72696) is identical, as are ESTs for cv CS (dbEST BJ237450) and cv CNN (dbEST BE422565).
Gsp-D1b\{03105\}. dv: Ae. tauschii TA1583 (GenBank AY252079) Pina-D1a, PinbD1a\{03105\}; TA2475 (GenBank AY252087) Pina-D1a, Pina-D1i\{03105\}.
Gsp-D1c\{03105\}. dv: Ae. tauschii TA2369 (GenBank AY252081) Pina-D1c, PinbD1h\{03105\}; CPI110799 (GenBank AF177219) \{0383\}.
Gsp-D1d. dv: Ae. tauschii TA2536 (GenBank 252093) Pina-D1c, Pinb-D2i\{03105\}; TA2374 (GenBank AY252046) Pina-D1d, Pinb-D1i\{03105\}; TA2458 (GenBank AY252084) Pina-D1e, Pinb-D1i\{03105\}; TA2436 (GenBank AY252048) Pina-D1f, Pinb-D1i\{03105\}.
Gsp-D1e. dv: Ae. tauschii TA2527 (GenBank AY252066) Pina-D1c, Pinb-D1h\{03105\}; TA2512 (GenBank AY252092) Pina-D1d, Pinb-D1i\{03105\}; TA2495 (GenBank AY252091) Pina-D1e, Pinb-D1i\{03105\}.
Gsp-D1f. dv: Ae. tauschii TA1649 (GenBank AY252063) Pina-D1d, Pinb-D1h\{03105\}; TA2455 (GenBank AY252073) Pina-D1d, Pinb-D1i\{03105\}.
Gsp-D1g. dv: Ae. tauschii TA1599 (GenBank AY252062) Pina-D1a, Pinb-D1j\{03105\}.
Gsp-D1h. dv: Ae. tauschii TA1691 (GenBank AY252064) Pina-D1a, Pinb-D1j\{03105\}.

74.5.10. Starch synthase

SsI-A1\{0041\}. 7A\{0041\}.
SsI-B1\{0041\}. 7B\{0041\}.
SsI-D1\{0041\}. 7D\{0041\}.
Starch synthase I proteins are identical to the starch granule proteins SGP-3 \{0041\}.
SsII-A1 \{0042\}. 7A\{0042\}.
SsII-B1\{0042\}. 7B\{0042\}.
SsII-D1\{0042\}. 7D\{0042\}.
Starch synthase II proteins are identical to the starch granule proteins SGP-1 \{0042\}.

```
74.5.11. Histone H1 Proteins
    HstH1-A1{0215}. 5AL{0215}. v: CS{0215}.
    HstH1-B1{0215}. 5BL{0215}. v: CS{0215}.
    HstH1-D1{0215}. 5DL{0215}. v: CS{0215}.
        HstH1-D1a{0215}. v: CS{0215};18 others{0215}.
        HstH1-D1b{0215}. v: Grekum 114{0215}; Kirgizsky Karlik{0215}.
    HstH1-A2{0215}. 5AL{0215}. v: CS{0215}.
    HstH1-A2a{0215}. v: CS{0215}.
    HstH1-A2b{0215}. Null allele{0215}. v: Mara{0215}; 10 others{0215}.
    HstH1-B2{0215}. 5BL{0215}. v: CS{0215}.
    HstH1-B2a{0215}. v: CS{0215}; 19 others{0215}.
    HstH1-B2b{0215}. v: Excelsior{0215}.
HstH1-D2{0215}. 5DL{0215}. v: CS{0215}.
```

The relationship of this gene series with a Hst-A1, Hst-B1, Hst-D1 series in group 5 chromosomes $\{0216\}$ based on DNA hybridization studies was not established.

Pathogenic Disease/Pest Reaction

For disease/pest reaction gene guidelines see Introduction, no. 8.
Note: In listings of multiple alleles, the chromosomes locations and ma: citations with generally be given with the particular allele that was located of mapped.

75.Reaction to Barley Yellow Dwarf Virus

Bdv1 \{1363,1379\}. 7D\{1379\}.7DS \{1363\}. i: Jupeteco 73R (compared to Jupeteco 73S)\{1363\}. v: Anza\{1379\}; Condor BW3991\{1379\}; Tyrant BW3872\{1379\}; Hahn BW4097\{1379\}; Parrot BW10817\{1379\}; Siren BW18643\{1379\}; Many CIMMYT genotypes. Bdv1 is completely linked with Ltn, Lr34 and Yr18. See Ltn, Lr34, Yr18. Note: BW = CIMMYT wheat accession number.
Bdv2\{058\}. v: TC14*2/Hartog\{0225\}; TC14*2/Spear\{0201\}; TC14*2/Tatiara\{0225\}. 7Ai\#1S\{552\}.su:TAF2\{059\}; Lines 5395 \& 5395-243AA $\{552\}$. 7DL= T7DS.7DL-7Ai\#1L $\{552,0182\} . t r: T C 14\{059,0201\} ;$ H960642\{0182\}.

1B = T1BS-7A\#1S.7Ai\#1L\{552\}.tr:TC7\{447\}. ma: Distal 10\% of 7DL, translocation point between RFLP markers Xpsr680 and Xpsr965\{0182\}; Complete association with Xpsr129-7D, Xpsr548-7D, XksuD2-7D, XcslH81-7D, and Xgwm37-7D selected as a diagnostic marker\{0225\}.

76.Reaction to Blumeria graminis DC.
 Disease: Powdery Mildew.

76.1. Designated genes for resistance

Note: Chancellor, used as a susceptible genetic background, for some near-isogenic lines probably carries Pm10 and Pm15 \{1479\}.
Pm1.
Pm1a\{562\}. [Pm1\{130\},Mlt\{1175\},Mla\{348\}]. 7A\{1293\}.7AL\{1305\}. i:
Axminster/8*Chancellor\{132\}; CI 14114 = As II/8* ${ }^{*}$ Chancellor\{132\}; CI $13836 / 8^{*}$ Chancellor $\{132\}$; Kenya C6041/5 ${ }^{*}$ Federation $\{1168\}$; Norka $/ 8^{*}$ Chancellor $\{132\}$. s: CS* ${ }^{*}$ /Axminster 7A\{1293\}. v: Anfield\{098\}; As II\{130\}; Axminster\{130,1175\}; Birdproof \{165\}; Bonus\{1554\}; CI 13836\{130\}; Converse\{1175\}; Fedka\{939\}; Festival \{1554\}; Fram I\{130\}; Huron CI 3315\{1175,1554\}; Kenora\{1554\}; Kenya W744 = C6041\{130,1175\}; Norka\{130,1175\}; Pika\{130\}; Sweden W1230\{1554\}; Thew 11175$\}$; TU 4\{130\}; Zhengzhou 871124\{570\}. v2: Anfield Pm9\{1287\}; BGRC 44514 Pm3a\{1628\}; Mephisto Pm2 Pm9\{540\}; Normandie Pm2 Pm9\{165\}; Pompe Pm9\{1287\}; Ring Pm9\{1287\}; Sappo Pm2 Pm4b (Carries Lr20)\{310\}; Solo Pm2 Pm4b\{052\}. ma: Co-seg. with Xcdo347-7A using NILs\{864\}; Co-segregation or close linkage with three RAPDs; one RAPD converted to a STS\{570\}; Note: In Solo, Pm1 is translocated to chromosome 7D\{052\}; Complete cosegregation of several markers including Xcdo347-7A, Xpsr121-7A, Xpsr680-7A, Xpsr687-7A, Xbzh232(Tha)-7A, Xrgc607-7A and Xsts638-7A with Pm1 and Lr20 was reported in $\{0323\}$.
Pm1b\{562\}. v: MocZlatka\{562\}.

92

 Pathogenic Disease/Pest ReactionPm1c\{562\}. [Pm18\{853,562\}]. v: Blaukorn\{0011\}; M1N\{1628,562\}; In\{540\}; M1N was described as an undesignated subline of Weihenstephan M1. ma: AFLP marker 18M2 was diagnostic for Pm1c\{0011\}.
Pm1d\{562\}. v: T. spelta var duhamelianum TRI2258\{562\}. ma: AFLP marker 18M1 various Pm1 alleles $0.9 \mathrm{cM}\{0011\}$.
Pm1e\{0322\}. [Pm22\{1134\}]. v: Elia\{1134\}; Est Mottin\{1134\}; Ovest\{1134\}; Tudest\{1134\}; Virest\{1134\}.
Pm2\{130\}. [Mlu\{1175\},Mlx\{1088\}]. 5D\{1007\}.5DS\{945\}. i: CI $14118=$ Ulka/8 ${ }^{*}$ Chancellor $\left\{132\right.$ \}; CI $14119=$ CI 12632/8* ${ }^{*}$ Chancellor\{132\}; Federation ${ }^{*} 4$ /Ulka\{1168\}. v: Avalon\{096\}; Bounty\{096\}; Fenman\{096\}; Galahad\{1531\}; H8810/47\{130\}; Longbow\{1531\}; Maris Beacon\{1592\}; Maris Nimrod\{1592\}; Maris Sportsman\{096\}; Maris Templar\{1592\}; Norman\{096\}; Orestis\{1079\}; PI 92378\{1168\}; PI 181374\{1168\}; Sea Island\{130\}; Sentry\{096\}; S2303\{945\}; Synthetic(Iumillo/T. tauschii)\{1168\}; TP 114/2*Starke deriv\{626\}; Ulka\{130,1175\}; XX186 = T. durum Santa Maria/Aeg. squarrosa BGRC 1458 Pm19\{853\}. v2: Apollo Pm4b Pm8\{541\}; Brigand Pm6\{096\}; Brimstone Pm6\{1531\}; CI 12632 Pm6\{130\}; CI 12633 Pm6\{133\}; Compal Pm4b\{854\}; Crossbow Pm5 Pm6\{098\}; Gawain Pm6 \{1531\}; Halle Stamm 13471 MId\{097\}; Heiduck Pm6\{541\}; Hustler Pm6 \{096\}; Hornet Pm8\{1531\}; Kinsman Pm6\{096\}; Mardler Pm6\{096\}; Maris Dove MId\{1592\}; Maris Fundin Pm6\{096\}; Maris Huntsman Pm6\{1592\}; Mephisto Pm1 Pm9\{540\}; Normandie Pm1 Pm9\{165\}; Parade Pm5 Pm6 \{1531\}; Rendezvous Pm4b Pm6 \{1531\}; Solo Pm1 Pm4b \{052\}; Timmo Pm4b\{096\}; TP 114 Pm6\{626\}; Virtue Pm6\{096\}; Walter Pm4b Pm6 \{1428\}. dv: Aeg. squarrosa BGRC $1458\{853\}$; Forty accessions of T. tauschii 1852$\}$. ma: Pm2-3.5cM - Xbcd1871-5D using F2s\{864\}.
Pm3. 1A. ma: Xgdm33-1A-2.3 cM - Pm3/Xpsp2999-1A\{0313\}.
Genotype list: \{0313\}
Pm3a\{130,132\}. [Mla\{1168\}]. 1A\{1007\}.1AS\{943,947\}. i: Asosan/8*Chancellor\{132\}; $=$ CI 14120; Asosan $/ 3^{*}$ Federation $\{1168\}$. v: Asosan\{130,1168\}; BGRC 44514 Pm1a\{1628\}; Coker 797\{786\}; Florida 301\{786\}; Florida 302\{786\}; Hadden \{097\}; Halle Stamm\{097\}; Norin 3\{1134\}; Norin 29\{1134\}; PI 46890\{1439\}; Saluda\{786\}; Tyler\{1419\}. ma: Xbcd1434-1A-1.3 cM - Pm3 using NILs\{864\}; Xwhs179-1A - 3.3 cM - Pm3\{522\}.
Pm3b\{130,132\}. [Mlc\{165\}]. 1A\{1007\}. i: Chul ${ }^{*} 8 /$ Chancellor\{132 $\}$; T. sphaerococcum ${ }^{*} 8 /$ Chancellor $=$ CI 15887\{539\}. v: Chul\{165\}. ma: Xbcd1434-1A 1.3 cM - Pm3b using NILs $\{864\}$.

Pm3c\{130,132\}. [Mls\{1175\}]. 1A\{134,1007\}. i: Sonora/8* ${ }^{*}$ Chancellor\{132\}; = CI 14122; Sonora/4 4^{*} Federation $\{1168\}$; Triticale $/ 8^{*}$ Chancellor\{539\}. s: CS ${ }^{*} 7 /$ Indian 1A\{134\}. v: Borenos\{854\}; Cawnpore\{1628\}; CI 3008\{130\}; CI 4546\{130\}; Hindukusch\{1628\}; Indian\{1175\}; Sonora\{130,1168\}; Sturgeon\{1175\}.
Pm3d\{1628\}. [Ml-k\{540\},Mlk\{434\}]. 1A\{1628\}. v: Axona\{0313\}; Cornette\{0313\}; Herold\{540\}; Indian $4\{0313\}$; Kadett \{0313\}; Kanzler\{0011\}; Kleiber $\{0313\}$; Kolibri\{540,542,1628\}; Ralle\{540\}; Socrates \{heterogeneous\}\{540\}; Star \{heterogeneous $\{540\}$; Syros\{540\}. v2: Kadett Pm4b\{540\}; Turbo Pm4b\{540\}.
Pm3e\{1628\}. v: Sydney University Accession W150 =AUS 6449\{939,1628\}.
Pm3f\{1628\}. i: Michigan Amber/8* ${ }^{*}$ Chancellor\{1628\}; This allele was distinguished from Pm3c with only one of 13 pathogen cultures.
Pm3g\{0070\}. [Mlar\{854\}]. 1A\{0070\}.1AS\{0363\}. v: Avo\{1629\}; Aristide\{1629\}; Champetre\{0313\}; Courtot\{1629\}; Lutin\{0313\}; Oradian\{0313\}; Rubens $\{0313\}$; Soissons\{0313\}; Valois\{0313\}. ma: Pm3g-5.2 cM - Gli-A5-1.9 cM - Gli-A1 \{0070\}; $P m 3 g$ was completely linked to microsatellite Xpsp2999\{0363\}.
Pm4\{131\}.

Pm4a\{1464\}. [Pm4\{131\}]. 2AL\{1464\}. i: CI $14123=$ Khapli/ $/ 8^{*}$ Chancellor $\{131\}$; CI $14124=$ Yuma $/ 8^{*}$ Chancellor $\{131\}$. v: Steinwedel ${ }^{*} 2 / \operatorname{Khapli}\{939\}$. tv: Khapli $\{131\}$; Valgerado\{097\}; Yuma\{131\}. ma: Co-seg with Xbcd1231-2A.2 \& Xcdo678-2A using F2s $\{864\}$; Xbcd1231-2A.1-1.5cM - Pm4-1.56cM - Xbcd292-2A\{864\}; Pm4a - 3.5cM AFLP markers 4aM1 and 4aM2\{0011\}; Xbcd1231 was converted to a STS marker\{0069\}.
Pm4b $\{1464\}$. [Mle\{1591\}]. 2A\{052\}.2AL $\{1464\}$. i: Federation ${ }^{*} 7 / T$. carthlicum W804\{1464\}. v: Achill\{540\}; Ajax\{540\}; Arkas\{540\}; Armada\{096\}; Atlantis 00011$\}$; Boheme\{0011\}; Botri (heterogeneous) \{854\}; ELS\{1591\}; Facta\{854\}; Factor (heterogeneous) \{854\}; Fakon\{854\}; Fazit \{854\}; Hermes\{540\}; Horizont\{540\}; Maris Halberd; Max\{540\}; Olymp\{540\}; Orbis\{540\}; RE714\{1220\}; Renan\{0016\}; Ronos\{1079\}; S-25\{052\}; S-28\{052\}; TP 229\{626,1591\}; Weihenstephan M1\{1591\}; VPM1\{097\}. v2: Apollo Pm2 Pm8\{541,802\}; Boxer Pm5\{541\}; Compal Pm2\{854\}; Kadett Pm3d\{540\}; Kronjuwel Pm8\{541\}; Mission Pm5 \{78,541,1531\}; Rang Pm1\{052\}; Rendezvous Pm2 Pm6\{1531\}; Solo Pm1 Pm2\{052,540\}; Sorbas Pm6\{541\}; Timmo Pm2 Pm6\{096\}; Turbo Pm3d\{540\}; Walter Pm2 Pm6\{1428\}. ma: Pm4b4.8cM - Xgbx3119b\{0272\}; Xgwm382-2A - +/- 10 cM - Pm4b - +/- 2cM XgbxG303\{0354\}.
Pm5.
Pm5a\{0257\}.Recessive. [Pm5\{787\},mlH\{771\}]. 7B\{964\}.7BL\{771\}. i: Hope/8* Chancellor = CI 14125\{570\}. s: CS ${ }^{*} 6 /$ Hope 7B\{771,964\}. v: Alidos $\{854\}$; Aotea\{964\}; Caldwell\{786\}; Ga 1123\{786\}; Galaxie\{0257\}; Glenwari 964$\}$; Hardired\{786\}; Hope\{964\}; H-44\{964\}; Kontrast\{854\}; Kormoran\{1079\}; Kutulukskaya\{0257\}; Lambros\{0257\}; Lawrence\{964\}; Navid\{0257\}; Pagode\{0257\}; Redcoat\{097\}; Redman\{964\}; Regina\{0257\}; Renown\{964\}; Selpek\{540\}; Sicco\{096,0257\}; Spica\{964\}; Tarasque\{0257\}; Warigo\{964\}; Zolotistaya\{0257\}. v2: Arthur Pm6\{786\}; Coker 983 Pm6\{786\}; Double Crop Pm6\{786\}; Granada Pm8\{541\}; Sensor Pm8\{541\}.
Pm5a was transferred to hexaploid wheat from T. dicoccum via Hope and H-44.
Pm5b\{0257\}. [Mli\{540,558\}]. Mli\{540,558\}. v: Aquila\{096,541\}; Carimulti\{541\}; Cariplus\{541\}; Cucurova\{0257\}; Dolomit\{541\}; Falke\{541\}; Flanders\{096\}; Fruhprobst \{0257\}; Ilona\{0257\}; Ibis \{096\}; Kirkpinar-79\{0257\}; Kontrast\{0257\}; Kormoran\{541\}; Krata\{541\}; Markant\{541\}; Mercia\{1531\}; Milan\{541\}; Nadadores\{0257\}; Reiher\{541\}; Rektor\{541\}; Rothwell Perdix\{096\}; Siete Cerros\{0257\}; Severin\{541\}; Sicco\{096\}; Sperber\{541\}; Tukan\{541\}; Una\{0257\}; Urban\{541\}; Wattines\{541\}; Wettiness\{0257\}. v2: Bert Pm6\{541\}; Boxer Pm4b\{541\}; Crossbow Pm2 Pm6\{098\}; Kristall Pm8\{541\}; Mission Pm4b\{541,1531\}; Parade Pm2 Pm6\{1531\}.
Pm5c $\{0257\}$. 7B $\{0257\}$. v: T. sphaerococcum cv. Kolandi $\{0257\}$.
Pm5d\{0257\}. 7B $\{0257\}$. i: IGV 1-455 = CI 10904/7* ${ }^{*} \operatorname{Prins}\{0257\}$; CI 10904/7*Starke\{0257\}.
Pm5e\{0258\}.Recessive and hemizygous effective \{0258\}. [mlfz\{0259\}]. v: Fuzhuang $30\{0258\}$. ma: Xgwm1267-7B-6.6cM - Pm5e-12.6cM - Xubc $405_{628}\{0258\}$.
Pm6\{627\}. [MIf\{626\}]. 2B\{1088\}. i: CI 13250/7 ${ }^{*}$ Prins\{0069\}; CI 12559/8* ${ }^{*} \operatorname{Prins}\{0069\}$; PI 170914/7 ${ }^{*}$ Prins 6 NILs based on Prins \{0139\}.\{0069\}. v: 1969 IVGS Line C\{626\}; Abe\{097,1256\}; Coker747\{786,1079\}; Mengavi\{097\}; Oasis\{786\}; Timgalen\{098\}; TP 114/2*Starke deriv. B\{626\}. v2: Arthur Pm5a\{097,786\}; Brigand Pm2\{096\}; Brimstone Pm2\{1531\}; CI 12632 Pm2\{626,1088\}; CI 12633 Pm2\{626,1088\}; Crossbow Pm2 Pm5\{098\}; Double Crop Pm5a\{786\}; Garwain Pm2\{1531\}; Greif Pm5a\{0011\}; Heiduck Pm2\{541\}; Hustler Pm2\{096\}; Kinsman Pm2\{096\}; Mardler Pm2\{096\}; Maris Fundin Pm2\{096\}; Maris Huntsman Pm2\{1592\}; Parade Pm2 Pm5\{1531\}; Rendezvous Pm2

Pm4b\{1531\}; Sorbas Pm4b\{541\}; Timmo Pm2 Pm4b\{096\}; TP 114 Pm2\{626\}; Virtue Pm2\{096\}; Walter Pm2 Pm4b\{1428\}. ma: Close linkage with Xbcd135(1.5+-1.4cM), $X b c d 307(4.7+-2.5 \mathrm{cM})$ and $X b c d 266(4.5+-2.4 \mathrm{cM})\{0069\}$; Mapped to the interval $X b c d 35-2 B-$ Xpsr934-2B\{0139\}; However, the fact that Timgalen and a 'CI12632/Cc' line lacked the critical T. timopheevii markers $\{0139\}$ is cause for concern.
Pm7. Derived from S. cereale cv. Rosen. 4BL $\{270,271,389\}=$ T4BS.4BL-5RL\{543\}, but more recently revised to T4BS.4BL-2R\#IL\{380,389\}. i: $=$ Transec/8* ${ }^{*}$ Chancellor. v: Transfed\{269\}; Transec \{273\}.
Pm8. Derived from Petkus rye - see Yr9, Lr26, Sr31. 1R\{1B\}.1BL.1RS. v: Corinthian\{1531\}; Dauntless\{1531\}; Ambassador\{1531\}; Disponent\{541\}; GR876\{753\}; Halle Stamm\{097\}; Hammer\{098\}; Others\{1208\}; ST1-25\{201\}; Slejpner\{1531\}; Stetson\{1531\}; Stuart\{096\}. v2: Apollo Pm2 Pm4b\{541\}; Granada Pm5\{541\}; Hornet Pm2\{1531\}; Kristall Pm5\{541\}; Kronjuwel Pm4b\{541\}; Sensor Pm5\{541\}. tv: Cando*2/Veery=KS91WGRC14\{381\}. 1BS/1RS recombinants 2.9 cM proximal to Gli-B1/GluB3\{0084\}.i:MA1 and MA2, fourbreakpoint double translocation lines 1RS-1BS-1RS-1BS. 1BL in Pavon\{0084\}.
Crosses between three lines with Pm8 and Helami-105, a 1BL.1RS line with Pm17, indicated that Pm8 and Pm17 were allelic\{524\}. Earlier, these genes were reported to be genetically independent\{1463\}. A STS marker distinguished Pm17 from Pm8\{0286\}.
Pm9\{347\}. 7A\{347\}.7AL. v: N14\{562\}. v2: Anfield Pm1a\{1287\}; Mephisto Pm1a Pm2\{540\}; Normandie Pm1a Pm2\{347\}; Pompe Pm1a\{1287\}; Ring Pm1a\{1287\}.
Pm10\{1482\}. 1D\{1482\}. v: Norin 4\{1482\}; Norin 26\{1482\}; Norin 29\{1482\}; Penjamo $62\{1482\}$; Shin-chunaga\{1482\}. v2: T. spelta duhamelianum Pm11\{1481\}.
Pm10 was detected using a culture derived from a hybrid of B. g. tritici and B. g. agropyri.
Pm11\{1481\}. 6BS\{1481\}. v: Chinese Spring\{1481\}; Salmon\{1481\}; T. compactum No. $44\{1481\}$. v2: T. spelta duhamelianum Pm10\{1481\}.
Pm11 was detected using a culture derived from a hybrid of B. g. tritici and B. g. agropyri
Pm12\{1017\}. Derived from Ae. speltoides.
The earlier location of $6 \mathrm{~A}\{1017\}$ was not correct. $6 \mathrm{~B}=6 \mathrm{BS}-6 \mathrm{SS} .6 \mathrm{SL}\{598,572\}$. \mathbf{v} : Wembley ${ }^{*} 6 /$ Ae. speltoides, $\# 31\{1017,598\} ; 6 S^{1}$ S $\{598\}$. al: Ae. speltoides CL214008 = K\{1017\}. ma: Pm12 was mapped to a translocated segment proximal to Xpsr551-6B\{598\}.
Pm13. Derived from Ae. longissima
3B $\{173\}=$ T3BL.3BS-3S ${ }^{1} \# 1 \mathrm{~S}\{389\} . \mathrm{v}: R 1 A\{174\} ; \operatorname{R1B}\{0055\} ; \operatorname{R4A}\{0055\} ; \operatorname{R6A}\{0055\}$. 3D $\{173\}=$ T3DL.3DS-3S ${ }^{1} \# 1 \mathrm{~S}\{389\} . \mathrm{tv}:$ R1D $\{174\} . \mathrm{v}: \operatorname{R2A}\{0055\} ; \operatorname{R2B}\{0055\}$.
3S ${ }^{1} \# 1 \mathrm{~S}$.al:Ae. longissima. ma: STS marker Xutv13\{0036\}; several other markers located in introgressed segments \{0036\}; Pm13 was mapped to a translocated $3 S^{1}$ S segment distal to Xcdo-460-3B\{0036\}.
Pm14. 6B\{1478\}. v2: Akabozu Pm15\{1478\}; Kokeshikomugi Pm15\{1478\}; Norin 10 Pm15\{1478\}.
Pm14 and Pm15 were detected using hybrids between B. g. tritici and B. g. agropyri cultures.
Pm15. 7DS 1478$\}$. v2: Akabozu Pm14\{1478\}; Chinese Spring Pm11\{1478\}; Kokeshikomugi Pm14\{1478\}; Norin 4 Pm10\{1478\}; Norin 10 Pm14\{1478\}; Norin 26 Pm10\{1478\}; Shinchunaga Pm10\{1478\}; T. macha subletschumicum Pm10\{1478\}; T. compactum No. 44 Pm11\{1478\}.
Pm14 and Pm15 were detected using hybrids between B. g. tritici and B. g. agropyri cultures.
Pm16\{1201\}. 4A\{1201\}. v: Norman lines with resistance from T. dicoccoides
CL1060025\{1201\}. tv: T. dicoccoides CL1060025\{1201\}.
Pm17\{097,838,544\}.
1AS = T1AL.1R\#2S \{1624,185,389\}.v:Amigo\{561\}; Century\{216\}; Nekota\{0021\}; Neobrara\{0021\}; TAM107\{216\}; TAM200\{216\}; TAM201\{216\}; TAM202\{0021\}. 1BS = T1BL.1R\#2S\{561\}.v2:Helami $105 \operatorname{Pm} 5\{561\}$. ma: A STS marker distinguished

95

Pathogenic Disease/Pest Reaction

Pm17 from Pm8\{0286\}.
Pm8 and Pm17 were reported to be allelic \{524\}, see note under Pm8.
Pm18. Deleted, see Pm1c.
Pm19\{853\}. 7D\{853\}. v: T. durum 'Moroccos 183'/Ae. squarrossa AE 457/78\{853\}. v2: Synthetic XX186 Pm2\{853\}. dv: Ae. squarrosa\{853\}.
Pm20\{386\}. [M1P6L\{543\}]. 6BL = T6BS.6R\#2L\{543,386,389\}. v: KS93WGRC28 = PI 583795\{386,382\}; 6RL. su: 6R\{6D\}\{543\}. ad: 6R addition\{543\}. al: Prolific rye 543$\}$.
Pm21\{1177\}. 6AS = T6AL.6VS\{1177\}. v: 9 independent translocations\{1177\}. ma: RAPD OPH17 1_{1900} (synonym 'OPH17-1900') was associated with Pm21 and RAPD OPH17 ${ }_{1000}$ (synonym OPH17-1000') with its absence\{1176\}; RAPD OPH17 ${ }_{1400}$ and SCAR markers SCAR $_{1400}$ and SCAR $_{1265}$ associated with Pm21 are described in\{0014\}.
Pm22\{1134\}.
Deleted. See Pm1e.
Pm23\{1618\}. 5A\{1618\}. v2: Line 81-7241 Pm8\{1618\}.
Pm24\{571\}. 6D\{571\}.1DS\{0150\}. v: Chiyacao\{571\}.
Although Pm24 had previously been located to chromosome 6D \{571\}, Pm24 was mapped on chromosome arm 1DS in the cross Chinese Spring (susceptible) x Chiyacao (resistant) $\{0150\}$.
Pm25\{1343\}. [PmTmb\{1343,1344\}]. 1A\{1343\}. v: NC94-3778\{1344\}. v2: NC96BGTA5 $=$ Saluda*3/PI 427662 Pm3a\{1343\}. dv: T. monococcum PI 427662\{1343\}. ma: Linked with 3 RAPDs, the nearest, OPAG04950, at $12.8+/-4.0 \mathrm{cM}\{1343\}$; Associated with 3 RAPDs\{1344\}.
Pm26\{0001\}. Recessive \{0001\}. 2BS\{0001\}. s: Bethlehem ${ }^{*} 8 /$ T. turgidum var. dicoccoides 2BS $\{0001\}$. tv: T. turgidum var. dicoccoides TTD140\{0001\}. ma: Co-segregation with Xwg516-2B\{0001\}.
Pm27\{0002\}. 6B (6B-6G)\{0002\}. v: Line 146-155-T\{0002\}. tv: T. timopheevii var. timopheevii K-38555\{0022\}. ma: 6BS......Xpsr8/Xpsr964-6B - Pm27-Xpsr154/Xpsr5466B6BL $\{0002\}$; Co-segregation with Xpsr3131-6B\{0002\}.
Pm28\{0022\}. 1B\{0022\}. v: $\operatorname{Meri}\{0022\}$.
Pm29\{0129\}. v: Pova\{0129\}. ma: Location confirmed by co-segregation with molecular markers \{0129\}.
Pm30\{0163\}. [MIC20] 5BS\{0163\}. v: 87-1/C20//2*8866 Seletion\{0163\}. ma: Pm305.6cM - Xgwm159-5B\{0163\}.

Pm31\{0301\}. v: G-305-M/781//3*Jing411\{0301\}. tv: T. dicoccoides G-305-M\{0301\}.
Genotype lists:Chinese wheats\{1608,572\}; Finnish wheats \{0028\}; French wheats\{1629\}; Hungarian wheats $\{02104\}$; Western Siberian wheats $\{1101\}$
Complex genotypes:
Drabent \{heterogeneous\} Pm2 Pm4bPm9/Pm1 Pm2 Pm4b Pm9 \{1287\}; :
Nemares Pm1 Pm2Pm4b Pm6 Pm9 \{1287\};:
Planet, Sappo \& Walter Pm1 Pm2 Pm4b Pm9 \{096,097,540,1287,1428\}

76.2. Suppressors of $\boldsymbol{P m}$

Some wheats which, on the basis of cytological and rust tests carry 1RS from Petkus rye, do not express resistance due to presence of a suppressor \{385\}. Zeller \& Hsam \{1625\} located a suppressor of Pm8 and Pm17 in chromosome 7D of Caribo. Mildew resistance was suppressed in Florida, Heinrich, Ikarus, Olymp and Sabina, which are derivatives of Caribo with 1BL.1RS. According to Ren et al. \{1209\}, SuPm8 does not suppress Pm17. Hanusova et al. $\{492\}$ listed 16 wheats that carry a suppressor of Pm8; 111 wheats did not carry the suppressor. In contrast, a high frequency of suppression occurred in CIMMYT wheats

96 Pathogenic Disease/Pest Reaction

$\{108,1208\}$. Further genotypes are identified in \{491\}. Although Line 81-7241 carries Pm8 as well as Pm23, evidence was presented to indicate that Pm8 was suppressed in Line 81$7241\{1618\}$ and , by inference, indicated that Chinese Spring possessed SuPm8.
SuPm8\{1209\}. 1AS\{1209\}. v: Wheats with Gli-A1a\{1209\}; Lists in\{108,491,1208\}. A suppressor of Pm17, as well as of Pm8, was located in chromosome 7D of Caribo \{1625\}. Gene SuPm8 identified by Ren et al. $\{1209\}$ did not suppress Pm17.

76.3. Temporarily designated gene for resistance to Blumeria grminis

MI-Ad\{854\}. v: Adlungs Alemannen\{854\}.
MI-Br\{854\}. v: Bretonischer Bartweizen\{854\}.
MId $\{096\}$. 4B\{097\}. v2: Halle 13471 Pm2\{096\}; H8810/47 Pm2\{096\}; Maris Dove Pm2\{096\}. tv: T. durum line\{096\}.
MI-Ga\{854\}. v: Garnet\{854\}; many old German cultivars \{854\}.
$\boldsymbol{m l j} \boldsymbol{y}\{0339\}$. Recessive, hemizygous-effective \{0339\} 7B\{0339\}. v2: Jieyan 94-1-1 Pm8\{0339\}.
$\boldsymbol{m l s y}\{0339\}$. Recessive, hemizygous-effective \{0339\} 7B\{0339\}. v: Siyan 94-2-1 \{0339\}.
MIre\{1220\}. 6AL\{0142\}. v2: RE714 Pm4b\{0142,1220\}. tv: T. dicoccum 119\{1220\}. Mlre showed a residual effect on the quantitative expression of APR in the presence of B. graminis pathotypes considered virulent for Mlre in standard seedling tests\{0016\}. In addition to MIre, a QTL for resistance effective at the seedling stage was associated with microsatellite marker Xgwm174-5D \{0146\}.
MIxbd\{0259\}. Recessive and hemizygous-effective \{0258\} 7B\{0259\}. v: Xiaobaidong\{0258\}.

76.4. QTLs for resistance to Blumeria graminis

QTL: Several QTLs were detected in two RE714/Hardi populations when tested at two growth stages and with different cultures over three years. The most persistent and effective QTL was located in the vicinity of Xgwm174-5D \{0272\}. Three QTLs, QPm.vt-1B, QPm.vt$2 A$ and QPm.vt-2B, with additive gene action, accounted for 50% of the variation in a population developed from Becker/Massey\{0284\}.
QTLs on chromosomes 1A, 2A, 2B, 3A, 5D, 6A and 7B were detected in a RE714/Festin population in multiple locations and over multiple years. The QTLs on chromosome 5D was detected in all environments and all years and is associated with markers Xgwm639-5D and Xgwm174-5D. Resistance was contributed by RE714. A QTL coinciding with MIRE on 6A was also detected in all environments. The QTL on chromosome 5D and 6A accounted for 45% to 61% of the phenotypic variation $\{0354\}$.
QPm.sfr-1A\{0051\}. 1A\{0051\}. v: Forno/T. spelta var. Oberkulmer mapping population; the resistance was contributed by Oberkulmer\{0051\}. ma: Associated with Xpsr1201-1A and Xpsr941-1A\{0051\}.
QPm.sfr-1B\{0051\}. 1B\{0051\}. v: Forno/T. spelta var. Oberkulmer mapping population; the resistance was contributed by Forno\{0051\}. ma: Associated with Xsfr3(LRR)-1B and Xpsr593-1B\{0051\}.
QPm.sfr-1D\{0051\}. 1D\{0051\}. v: Forno/T. spelta var. Oberkulmer mapping population; the resistance was contributed by Oberkulmer\{0051\}. ma: Associated with Xpsr168-1D and Xglk558-1D $\{0051\}$.
QPm.sfr-2A\{0051\}. 2A\{0051\}. v: Forno/T. spelta var. Oberkulmer mapping population; the resistance was contributed by Oberkulmer\{0051\}. ma: Associated with Xpsr380-2A and Xglk293-2A\{0051\}.

QPm.sfr-2D\{0051\}. 2D $\{0051\}$. v: Forno/T. spelta var. Oberkulmer mapping population; the resistance was contributed by Oberkulmer\{0051\}. ma: Associated with Xpsr932-2D and Xpsr331-2D $\{0051\}$.
QPm.sfr-3A\{0051\}. 3A\{0051\}. v: Forno/T. spelta var. Oberkulmer mapping population; the resistance was contributed by Forno\{0051\}. ma: Associated with Xpsr598-3A and Xpsr570-3A \{0051\}.
QPm.sfr-3D\{0051\}. 3D\{0051\}. v: Forno/T. spelta var. Oberkulmer mapping population; the resistance was contributed by Oberkulmer\{0051\}. ma: Associated with Xpsr1196-3D and Xsfr2(Lrk10)-3D\{0051\}.
QPm.sfr-4A.1 $\{0051\}$. 4A\{0051\}. v: Forno/T. spelta var. Oberkulmer mapping population; the resistance was contributed by Forno\{0051\}. ma: Associated with Xgwm111-4A and Xpsr934-4A \{0051\}.
QPm.sfr-4A.2\{0051\}. 4A\{0051\}. v: Forno/T. spelta var. Oberkulmer mapping population; the resistance was contributed by Forno\{0051\}. ma: Associated with Xmwg710-4A and Xglk128-4A\{0051\}.
QPm.sfr-4B\{0051\}. 4B $\{0051\}$. v: Forno/T. spelta var. Oberkulmer mapping population; the resistance was contributed by Forno\{0051\}. ma: Associated with Xpsr593-4B and Xpsr1112-4B\{0051\}.
QPm.sfr-4D\{0051\}. 4D\{0051\}. v: Forno/T. spelta var. Oberkulmer mapping population; the resistance was contributed by Forno\{0051\}. ma: Associated with Xglk302-4D and Xpsr1101-4D\{0051\}.
QPm.sfr-5A.1\{0051\}. 5A\{0051\}. v: Forno/T. spelta var. Oberkulmer mapping population; the resistance was contributed by Oberkulmer\{0051\}. ma: Associated with Xpsr644-5A and Xpsr945-5A\{0051\}.
QPm.sfr-5A.2\{0051\}. 5A\{0051\}. v: Forno/T. spelta var. Oberkulmer mapping population; the resistance was contributed by Oberkulmer\{0051\}. ma: Associated with Xpsr1194-5A and Xpsr918-5A\{0051\}.
QPm.sfr-5B\{0051\}. 5B\{0051\}. v: Forno/T. spelta var. Oberkulmer mapping population; the resistance was contributed by Oberkulmer\{0051\}. ma: Associated with Xpsr580-5B and Xpsr143-5B\{0051\}.
QPm.sfr-6B\{0051\}. 6B\{0051\}. v: Forno/T. spelta var. Oberkulmer mapping population; the resistance was contributed by Forno\{0051\}. ma: Associated with Xpsr167-6B and Xpsr964-6B\{0051\}.
QPm.sfr-7B.1\{0051\}. 7B\{0051\}. v: Forno/T. spelta var. Oberkulmer mapping population; the resistance was contributed by Forno\{0051\}. ma: Associated with Xpsr593-7B and Xpsr129-7B\{0051\}.
QPm.sfr-7B.2\{0051\}. This QTL corresponds to Pm5 \{0051\}. 7B\{0051\}. v: Forno/T. spelta var. Oberkulmer mapping population; the resistance was contributed by Forno\{0051\}. ma: Associated with Xglk750-7B and Xmwg710-7B\{0051\}.
QPm.ipk-2B\{0255\}. 2BS $\{0255\}$. v: Opata/W-7984 (ITMI) RI mapping population $\{0255\}$; Resistance was contributed by Opata\{0255\}. ma: Associated with Xcdo405 and Xmwg950\{0255\}.
QPm.ipk-4B\{0255\}. 4B\{0255\}. v: Opata/W-7984 (ITMI) RI mapping population\{0255\}; Resistance was contributed by W-7984\{0255\}. ma: Associated with Xcdo795 and Xbcd1262\{0255\}.
QPm.ipk-7D\{0255\}. 7DS \{0255\}. v: Opata/W-7984 (ITMI) RI mapping population\{0255\}; Resistance was contributed by Opata\{0255\}. ma: Associated with $X w g 834$ and Xbcd1872\{0255\}.

77.Reaction to Cochliobolus sativus Ito \& Kurib.

Disease: Cochliobolus root rot.
Crr $\{764\}$. Recessive. 5BL $\{764,765\}$. v: Apex $\{764\}$; Cadet $\{765\}$.

78.Reaction to Diuraphis noxia (Mordvilko)

Insect pest: Russian aphid, Russian wheat aphid.
Dn1\{286\}. 7D\{1288\}.7DS\{0211\}. i: Betta-Dn1\{0004,0211\}; Caledon\{0004\}; Gariep\{0004\}; Karee-Dn1\{0211\}; Limpopo-Dn1\{0004\}; Tugela-Dn1\{0004,0211\}. v: PI 137739\{286\}. ma: Xgwm111-7D $210-3.20+/-0.20 \mathrm{cM}-\operatorname{Dn} 1\{0211\}$.
Dn2\{286\}. 7DL \{863\}.7DS\{0211\}. i: Betta-Dn2\{0211\}; Karee-Dn2\{0211\}; TugelaDn2\{0211\}. v: PI 262660\{286,863\}. ma: XksuA1-7D-9.8 cM - Dn2\{863\}; Myburg et al. $\{9968\}$ identified two SCAR markers that mapped 3.3cM proximal to Dn2\{9968\}; Xgwm111-7D $200-3.05$ +/- 0.18 cM - Dn2\{0211\}; XksuA1-7D - 9.9 cM - Dn2-2.8 cM -Xgwm437-7D\{0353\}.
According to Saidi \& Quick \{1250\}, Dn1 and Dn2 are probably allelic. Reference stocks with each gene showed allelism with a gene in PI 262605.
Dn3\{1086\}. Recessive. v: T. tauschii SQ24/T. turgidum TD65\{1086\}. dv: T. tauschii SQ24\{1086\}.
Dn4\{1250\}. 1DL\{863\}. v: CORWAI\{260\}; CI 2401\{260\}; Halt\{0209\}; PI 151918\{260\}; PI 372129\{1250\}. ma: Xabc156-1D-11.6 cM - Dn4 \{863\}; Xgwm106-1D-7.4 cM - Dn4 12.9 cM - Xgwm337-1D\{0352\}.

Dn5\{1249\}. 7D\{259\}.7DL\{287\}.7DS \{0211\}. i: Betta-DN5\{0211\}; Palmiet derivative 92RL28\{287\}; Palmiet DN5\{0004\}. v: STARS - 9302W-sib\{259\}; PI 294994\{259\}. ma: A SCAR marker developed from the RAPD fragment OPF14 1_{1083} mapped 5.5 cM proximal to Dn5\{0172\}; Xgwm111-7D 220 - less than 3.20 cM - Dn5\{0211\}.
Dn6\{1250\}. v: CI 6501\{260\}; PI 243781\{1250,1249\}. ma: Dn6-3.0 cM - Xgwm111\{0352\}.
Dn7\{9918\}. Derived from S. secale cv. Turkey 77 \{9918\} 1B = 1BL.1RS\{9918\}.1R\{9918\}. v: 93M45-14\{9918\}.
Dn8\{0211\}. 7DS\{0211\}. i: Karee-Dn8. v2: PI 294994 Dn5Dn9\{0211\}. ma: Xgwm635$7 D_{100}$ - less than $3.20 \mathrm{cM}-\mathrm{Dn} 8\{0211\}$.
Dn9\{0211\}. 1DL\{0211\}. i: Betta-DN9. v2: PI 294994 Dn5Dn8\{0211\}. ma: Xgwm642$7 D_{180}$ - less than $3.20 \mathrm{cM}-\operatorname{Dn9}\{0211\}$.
Dnx\{0211\}. 7DS\{0211\}. v: PI 220127\{0211\}. ma: Xgwm111-7D $210-1.52+/-0.15 \mathrm{cM}-$ Dnx\{0211\}.
Dnx was considered to be located at a locus different from Dn1, Dn2 or Dn5 \{0211\}, which were likely to be identical or allelic.

79.Reaction to Fusarium graminearum

Disease : Fusarium head scab.
Fhs1 1096\}. v: Line A\{1096\}. v2: Ning 7840 Fhs2\{1096\}.
Fhs2\{1096\}. v: Line B\{1096\}. v2: Ning 7840 Fhs1\{1096\}.
A major QTL was associated with several linked AFLP markers tentatively located in chromosome 7BL of Ning 7840\{0005\}.
QFhs.ndsu.2A\{9925,0175\}. 2AL\{9925\}. v: Sumai 3/Stoa RI mapping population; the QTL was contributed by Stoa\{9925\}. ma: Association with RFLP XksuH16-2A (LOD>3) $\{9925,0175\}$.
QFhs.ndsu.3AS\{0372\}. 3AS\{0372\}. tv: T. turgidum var. dicocooides. Recombinant substitution lines LDN and LDN(Dic-3A). The resistant allele was contributed by
dicoccoides\{0372\}. ma: Associated with Xgwm2-3A (explained 37\% of the phenotypic variation) $\{0372\}$.
QFhs.ndsu.3B\{9925,0175\}. 3BS\{9925\}. v: Sumai 3/Stoa RI mapping population; the QTL was contributed by Sumai $3\{9925,0175\}$. ma: Association with Xbcd9073B.2(LOD>3)\{9925\}; and microsatellite markers Xgwm1533-3B and Xgwm493-3B\{0175\}. This QTL explained 42\% of the variation in Sumai 3/Stoa $\{0175\}$.
Two additional QTL for resistance to Fusarium graminearum were identified in the cross Sumai3/Stoa $\{0175\}$. The QTL on 4BS was associated with $X w g 909-4 B$ and the QTL on 6BS was associated with Xbarc101-6B and Xbcd1383-6B \{0175\}. The QTL associated with markers Xgwm493/Xgwm533 (explaining 24.8 \% of the variation), and Xbarc101/Xbcd1383 were also identified in a RIL population from the cross ND2603/Butte 86 \{0175\}. In addition, one QTL on chromosome 3AL associated with $X b c d 941-3 A$ and one on chromosome 6AS associated with XksuH4-6A were identified in RILs from the cross ND2603/Butte 86 \{0175\}.
The resistance QTL on chromosome 3BS associated with Xgwm493-3B and Xgwm533-3B was also identified in a DH population of the cross CM-82036 (a Sumai 3 derivative) Remus $\{0240\}$. Additional QTL in this cross were detected on chromosome 5A, associated with Xgwm293-5A and Xgwm304-5A, and possibly on 1B, associated with Glu-B1 \{0240\}.
Two major genes with additive effects were reported in cross between Sumai 3 (resistant) and two susceptible cultivars $\{0174\}$. One of the genes was assigned to 5AL based on linkage to the dominant awn suppressor B1 (RF 15.1-21.4\%).
For review see\{0283\}.
Mesterhazy et al. $\{0006\}$ reported a strong genetic correlation in resistance to different species of Fusarium.
QTLs were located in 3BS, 2BL and 2AS in Ning 7840/Clark. The most effective QTL was probably in interval, flanked by deletions 3BS-3 and -8 and was close to Xgwm533-3B and Xbarc147-3B \{0328\}.

80.Reaction to Heterodera avenaeWoll.

Cereal root eelworm; cereal cyst nematode.
Cre1. [Cre\{1388\}]. 2B\{1388\}.2BL\{1579,1580\}. i: AP $=$ Prins $^{*} 8 / A U S 10894\{1579\}$. v: AUS 10894\{1056\}; Loros CI 3779\{1388\}. ma: Xglk605-2B-7.3cM - Cre1-8.4cM -Xcdo588-2B/Xabc451-2B\{1579\}; A PCR-based assay was developed from Xglk605$2 B\{1580\}$.
Cre2\{238\}. Derived from Ae. ventricosa $10\{238,9991\} .6 \mathrm{M}^{\mathrm{V}}\{9991\}$ v2: H-93-8 Cre6\{238\}. Although H-93-8 is a double $\mathrm{M}^{\mathrm{v}}(5 \mathrm{~A}), 7 \mathrm{M}^{\mathrm{v}}(7 \mathrm{D})$ substitution line, Cre 2 was presumed to be located in a separate undetected translocated $6 \mathrm{M}^{\mathrm{V}}$ segment $\{9991\}$.
Cre3. [CcnD1\{329\},Ccn-D1\{328\}]. 2DL\{328\}. v: Synthetic hexaploids\{329\}. dv: T. tauschii accessions AUS 18912\{328\}; AUS 18913\{328\}; CPI 110809\{329\}; CPI 110810\{328\}.
Cre4. [CcnD2\{329\},Ccn-D2\{328\}]. 2D\{328\}. dv: T. tauschii accessions AUS 18914\{329\}; CPI 110813\{328\}.
Cre5\{0107\}. Derived from Aegilops ventricosa $\{0107,0009\}$. [CreX\{0009,0183\}]. 2AS $\{0107\}=2 A-2 N^{\mathrm{V}}-6 \mathrm{~N}^{\mathrm{V}}$. v: VPM1\{0107\}; Many VPM1 derivatives $\{0107\}$; Notable exceptions of lines with Lr37, Sr38 and Yr17, but lacking Cre5 include Trident and Line L22\{0107\}. su: Moisson $6 \mathrm{~N}^{\mathrm{v}}(6 \mathrm{D})\{0183\}$. dv: Ae. ventricosa $10\{0183\}$.
Two resistance gene analogues similar to the candidate gene Cre3 were isolated from the Ae. ventricosa segment carrying Cre5
Cre6\{0138\}. Derived from Aegilops ventricosa $\{0138\} .5 \mathrm{~N}^{\mathrm{v}}\{0138\}$. ad: Moisson $+5 \mathrm{~N}^{\mathrm{v}}\{0138\}$. v: H-93-35\{0138\}. v2: H-93-8 Cre2\{0138\}.

100

Cre7\{0104\}. Derived from Aegilops triuncialis \{0105\}. [CreAet\{0105\}]. v: TR353 derivatives $\{0105\}$.
Cre8\{0220\}. [CreF\{0012,0138\}]. 6B\{0220\}, on basis of linkage with Xbcd1-6B and Xcdo3476B\{0220\}. v: Barunga\{0220\}; Festiguay \{0012,0220\}; Frame\{0138,0220\}; Molineaux\{0220\}. ma: Associated with a unique allele when probed with CDO367 which hybridizes to group 7L $\{1059\}$.
CreR\{0133,0318\}. 6RL\{0133\}. ad: Wheat + 6R \{0318\}; Wheat + 6RL $\{0318\}$; Various deletion stocks\{0318\}. su: CS + 6R(6D)\{0133\}. al: Rye accession T701-4-6\{0133\}; Triticale T-701\{0318\}. ma: Cent......XksuF37-3.7cM - CreR\{0133\}; Deletion mapping indicated CreR was located near Got-R2\{0318\}.

81.Reaction to Magnaporthe grisea (Herbert) Barr

M. grisea is a pathogen of blast on many graminaceous species, the best known of which is rice. In Brazil it has become a pathogen of wheat. The wheat pathotype(s) is different from those attacking other species such as rice, oat, millets and weeping lovegrass.
Rmg1\{0333\}. [Rwt4\{0302\}]. v: Norin $4\{0302\}$.
A second gene designated Rwt3 \{0302\} was present in CS and Norin 4. Genes Rwt3 and Rwt4 were detected using hybrids of Triticum- virulent and Avena-virulent pathogen isolates.

82.Reaction to Mayetiola destructor (Say) (Phytophaga destructor) (Say)

Insect pest: Hessian fly.
H1\{1087\}. i: Dawson/3 ${ }^{*}$ Poso, 6179\{1087\}. v2: Big Club 43 H2\{1441\}; Dawson H2\{166,1087\}; Poso 42 H2\{1441\}.
H2\{1087\}. i: Dawson/3*Poso, $6232\{1087\}$. v2: Big Club 43 H1\{1441\}; Dawson H1 $\{166,1087\}$; Poso 42 H1 \{1441\}.
H3\{156\}. Recessive. 5A\{425,1105\}. i: Carol = Newton-207 ${ }^{*} 5 /$ Larned\{1107\}. v: Ace\{426\}; Arthur 426$\}$; Becker\{749\}; Cardinal\{750\}; Dual $\{1273\}$; Frankenmuth\{341\}; Georgia 1123\{426\}; GR855\{751\}; GR876\{753\}; Ionia\{426\}; Larned\{824\}; Logan\{426\}; Monon\{157\}; Norkan\{904\}; Ottawa\{547\}; Purdue B 36162 A13-12\{156\}; PI 468960\{1439\}; Redcoat\{1273\}; Reed\{1273\}; Riley \{1273\}; Roland\{148\}; Russell\{426\}; Shawnee\{547\}; Titan\{747\}; Todd\{426\}; W38\{156\}. v2: Clara Fay H6\{375\}. ma: Cosegregation of H3 and a RAPD \{296\}.
Allan et al. $\{019\}$ considered that $H 3$ and $H 4$ may be allelic. Also suggested by Shands and Cartwright \{1317\}. Linkage of 10.5 +/- 2\% involving H3 and Pm3a in PI 468960 was attributed to a chromosome 1A/5A translocation\{1437\}.
H4. Recessive. H4 confered resistance to race A, but not to race B. [h4\{1441\}]. v: Dixon\{1441\}; Java\{1441\}.
H5\{1317\}. Temperature sensitive \{1413\}. 1AS\{1222\}. v: Abe\{162\}; Arthur 71\{162\}; Beau\{875\}; Downy\{1223\}; Oasis\{1109\}; Ribeiro\{1317\}; Sullivan\{1110\}. tv: Giorgio 331-4\{1090\}; PI 94567-6\{1317\}; PI 94571-14\{1317\}. ma: Cosegregation of H5 and two RAPDs\{296\}.
H6\{019\}. 5A 425$\}$. i: Erin = Newton-207* $7 /$ Arthur 71\{1107\}; Flynn $=$ Newton-207 ${ }^{*} 7 /$ Knox $62\{1107\}$. v: Adder\{1319\}; Benhur\{426\}; Caldwell\{1421\}; Compton\{1318\}; CI 12855\{019\}; Excel\{752\}; Fillmore\{1106\}; Knox 62\{426\}; Lathrop\{426\}. v2: Clara Fay H3\{375\}. tv: Purdue 4835 A4-6\{1105\}. tv2: PI 94587 H11 H16\{019\}. ma: Cosegregation with three RAPDs\{296\}.
$\boldsymbol{H 7} \& \boldsymbol{H 8}\{425\}$. Duplicate factors. H7 is located in chromosome 5D \{026\}. v: Adena\{748\}; Seneca\{026,425\}.

H9\{1420\}. 5A\{162\}. i: Iris = Newton-207*7/Ella\{1107\}. v: Ella\{875\}; Line 822-34\{162\}. v2: Elva CI 17714 H10\{162\}; Line 812-24 H10\{1421\}; Line 817-2 H10\{1421\}; Stella H10\{875\}. ma: Cosegregation with two RAPDs\{296\}.
H10\{1104\}. 5A\{162\}. i: Joy = Newton-207 $3 /$ IN76529A5-3-3\{1107\}. v: IN $76529\{875\}$. v2: Elva CI 17714 H9\{162\}; Line 817-2H9\{162\}; Stella H9\{875\}. ma: Cosegregation with one RAPD and close linkage to another RAPD\{296\}.
$\boldsymbol{H} 11\{1422\} .1 \mathrm{~A}\{1222\}$. i: Karen $=$ Newton-207* $4 /$ IN916-1-3-1-47-1 $\{1107\}$. v: Kay $\{875,375\}$; Line $916\{1422\}$; Line $920\{1422\}$; Line $941\{1422\}$. tv2: T. turgidum PI 94587 H6 H16\{1422\}. ma: Close linkage with two RAPDs 296$\}.$
H12\{1092\}. 5A\{1098\}. i: Lola $=$ Newton-207*4/Luso\{1107\}. v: Luso\{1092\}. ma: Cosegregation with one RAPD and close linkage of H12 to another RAPD 296$\}$.
H13\{1104\}. 6DL \{441\}. i: Molly = Newton-207 7/3/KU221-19/Eagle/ KS806\{1107\}. v: KS81H1640HF \{441\}; T. turgidum var. durum cv. Gulab KU 134/Ae. tauschii KU 2076, KU 221-14\{525\}; T. turgidum var. persicum straminium KU 138/Ae. tauschii KU 2076, KU221$19\{525\}$. dv: Ae. tauschii KU 2076\{525\}. ma: Cosegregation with a RAPD\{296\}.
H14\{875\}. 5A\{875\}. tv: IN 81601A2-3-3\{875\}. tv2: ELS 6404-160 H15\{875\}. ma: Cosegregation with a RAPD $\{296\}$.
H15\{875\}. 5A\{875\}. tv: IN 81602C5-3-3\{875\}. tv2: ELS 6404-160 H14\{875\}.
H16\{1106\}. 5A\{1098\}. tv: IN 80164H5-2-9\{1106\}; N80164\{1097\}. tv2: PI 94587 H6 H11\{1106\}. ma: Cosegregation of H16 and a RAPD\{296\}.
H17 1090$\}$. 5A\{1090\}. tv: PI 428435\{1090\}. ma: Cosegregation of H17 and a RAPD\{296\}.
H18\{1090\}. v: Marquillo\{426,874\}; Shield\{198\}.
H19\{1089\}. tv: PI 422297\{1089\}; This germplasm possesses a second gene which is allelic or closely linked with H16\{1089\}; IN84702\{1097\}. tv2: PI422297 H29\{1097\}.
H20 025$\}$. 2B $\{025\}$. tv: Jori $\{025\}$.
H21. 2B $\{383\}=2 B S .2 R \# 2 L\{389\}$. v: Hamlet = KS89WGRC8\{1312\}; KSWR 69-2-4$3\{383\}$; KS85HF 011-5\{383\}. ad: KSWR 297h-1-1-9\{383\}. al: Chaupon rye\{383\}. ma: A RAPD amplified by primer OPE-13 was shown to co-segregate with $H 21\{9938\}$; A STS primer set SJ07 was developed to identify 2RL, and hence $H 21\{0233\}$.
H22\{1199\}. 1D\{1199\}. v: KS86WGRC1\{1199\}.
H23\{1199\}. 6D\{442\}.6DL\{1199\}. v: KS89WGRC3\{442\}. ma: H23-6.9 cM - XksuH4$6 D\{861\}$.
H24\{1199\}. 3D\{442,1199\}.6DL\{861\}. v: KS89WGRC6\{442\}. ma: H24-5.9 cM -Xbcd451-6D/Xcdo482-6D\{861\}.
H25.
6B\{384\} $=$ T6BS.6BL-6R\#1L\{389\}.v:88HF16 = WGRC17\{384\}.
$4 \mathrm{~B}\{384\}=$ T4BS.4BL-6R\#1L $\{389\} . \mathrm{v}: 88 \mathrm{HF} 79,88 \mathrm{HF} 80=$ WGRC18, 88HF81, $88 \mathrm{HF} 117=$ WGRC19\{384\}.
4A $\{384\}=$ Ti4AS.4AL-6R\#1L-4AL\{389\}.v:89HF17, 89HF18, 89HF25, 88HF32, 88HF51, 88HF89 = WGRC20\{384\}.
6R.al:Balbo rye\{384\}.
H26. 4D\{217\}. v: KS92WGRC26\{217\}. dv: Ae. tauschii TA2473\{217\}.
H27\{235\}. $4 \mathrm{M}^{\vee}\{235\}$. su: H-93-33\{235\}. al: Ae. ventricosa No. 10\{235\}; Ae. ventricosa No. 11\{235\}.
H28\{171\}. 5A\{171\}. tv: PI 59190\{171\}.
H29\{1095\}. [H27\{171\}]. 5A\{1097\}. tv: PI422297 H19\{1097\}.
H30 0256$\}$. Derived from Ae. triuncialis $\{0256\}$. v: TR-3531\{0256\}. al: Ae. triuncialis\{0256\}.
H31 \{0332\}. 5BS $\{0332\}$. v: P961696\{0332\}. tv: CI3984\{0332\}. ma: STS marker Xupw148-5B-3 cM - H31\{0332\}.

A recombination value of 12.0% between leaf-rust reaction \{possibly Lr10\} and Hessian-fly reaction in Selection 5240 was reported $\{018\}$.

83.Reaction to Meloidogyne spp.

Root rot nematode, root knot eelworm
Rkn 6632 . dv: Ae. squarrosa G3489. v: Prosquare, a synthetic hexaploid of Produra/A. squarrosa G3489\{632\}.
Rkn-mn1\{1621\}. Derived from Ae. variabilis\{1621\}. 3B\{590\}. v: X8=CS/Ae. variabilis No. 1//Rescler/3/Lutin\{1620\}; X35\{1620,1621\}. ma: Co-segregation with RAPD OpY161065 and close linkage with several markers including Est-B5\{0103\}.

84.Reaction to Mycosphaerella graminicola (Fuckel) Schroeter

Disease: Septoria tritici blotch
Stb1. [Slb1\{1586\}]. v: Bulgaria $88\{1586\} ;$ Oasis\{1586\}; Sullivan\{1586\}.
Stb2. [Slb2\{1586\}]. v: Nova Prata\{1586\}; Veranopolis\{1586\}.
Stb3. [Slb3\{1586\}]. v: Israel 493\{1586\}.
Stb4\{1410\}. v: Cleo\{1410\}; Tadinia\{1410\}; Tadorna\{1410\}.
$S t b 4$ segregated independently of Stb1 but its relationship with Stb2 and Stb3 is unknown.
Stb5\{0186\}. Identified using M. graminicola IPO94269\{0186\}. Derived from Aegilops tauschii accession 37-1 \{0186\}. 7DS\{0186\}. v: Bezostaya\{0187\}; Hereward\{0187\}; Sears' Synthetic $\{0186\}$; Shafir\{0187\}; Vivant $\{0187\}$. su: CS ${ }^{*} 8 /(\operatorname{Syn7D})\{0186\}$. dv: Ae. tauschii 37-1\{0186\}. ma: Rc3-6.6cM - Stb5-7.2cM - Xgwm44-7D - Centromere\{0186\}; Stb6-2cM - Xgwm369-3A\{0187\}.
Stb6\{0187\}. Confers resistance to M. graminicola isolate IPO323 but not to isolate IPO94269 \{0187\}. 3AS\{0187\}. v: Flame\{0187\}.
Stb7\{0311\}. 4AL\{0311\}. v: ST6 = Estanzuela Federal\{0310, 0311\}. ma: wmc219-4A $0.8 c \mathrm{M}$ - Xwmс-4A-0.3cM - Stb7\{0311\}.
Stb8\{0326\}. 7BL $\{0326\}$. v: Synthetic hexaploid W7984 (parent of ITMI population) $\{0326\}$. ma: Xgwm146-7B-3.5cM - Stb8-5.3cM - Xgwm577-7B\{0326\}.

85.Reaction to Pratylenchus spp.

Root lesion nematode; prats

85.1. Reaction to Pratylenchus neglectus

RInn1\{0121\}. 7AL\{0121\}. v: Excalibur\{0121\}; Krickauff\{0121\}. ma: Mapped between markers Xpsr121-7A and Xgwm344-7A and 9 cM proximal to $\operatorname{Lr} 20\{0374\}$.

85.2. Reaction to Pratylenchus thornei

QTLs were located on chromosomes 2BS and 6DS $\{0122\}$.

86.Reaction to Phaeosphaeria nodorum (E. Muller) Hedjaroude (anamorph: Stagonospora nodorum (Berk.) Castellani \& E.G. Germano).

Disease: Septoria nodorum blotch.
Snb1 \{856\}. 3AL \{856\}. v: Red Chief $\{856\}$. v2: EE8 Snb2\{856\}.

Snb2\{856\}. 2AL \{856\}. v2: EE8 Snb1\{856\}.
Snb3\{1594\}. 5DL 1594$\}$. s: CS*/Synthetic 5D\{1594\}. v: Synthetic $\{1594\}$. dv: Ae. tauschii\{1594\}.
SnbTM\{856,857\}. 3A\{857\}.3AL\{856\}. tv: T. timopheevii /2 ${ }^{*}$ Wakooma\{856\}; T. timopheevii PI 290518. T. timopheevii derivatives: S3-6\{857\}; S9-10\{857\}; S12-1\{857\}. ma:
UBC521 ${ }_{650}-15 \mathrm{cM}-\operatorname{SnbTM}-13.1 \mathrm{cM}-$ RC37 $_{510}\{0212\}$. UBC521 ${ }_{650}$ was converted to a SCAR marker $\{0212\}$.

87.Reaction to Puccinia graminis Pers.

Disease: Black rust; black stem rust; stem rust.
Note: Some near-isogenic lines are based on Marquis. The genes present in the Marquis background are not listed for those NILs.
Sr1. Deleted - see Sr9d.
Sr2\{38,677\}. Recessive allele. Adult plant response. 3BS $\{499\}$. s: CS ${ }^{*} 6 /$ Hope $3 \mathrm{~B}\{499\}$. v2: Warigo Sr7b Sr17\{499\}; Suneca Sr8a Sr17\{485\}; Hopps Sr9d\{499\}; Lancer Sr9d Sr17\{679\}; Scout Sr9d Sr17\{679\}; See also\{499,1040\}. ma: Xgwm389-3B-2.7cM - Sr21.1 cM - Xglk683-3B\{0358\}.

Sr2 is associated with pseudo-black chaff $\{742,1102\}$ and seedling chlorosis (see \{149\}) and occurs very frequently in commercial wheats, especially in germplasm produced and distributed by CIMMYT. Sr2 has probably remained effective since the 1920s.
Sr3 \& Sr4\{047\}. v: Marquillo - based on early data. No stocks available.
Sr5\{047\}. 6D\{939,1308,1626\}.6DS\{939\}. i: I Sr5-Ra\{828\}; I Sr5-Rb\{828\};
Sr5/7"LMPG\{685\}; Thatcher/10*Marquis\{686\}. s: CS ${ }^{*} 6 /$ Thatcher 6D\{1308\}. v: Admonter Fruh $\{072\}$; Dacia\{979\}; Dong-Fang-Hong 2\{564\}; Dong-Fang-Hong 6\{564\}; Feng-Kong\{563\}; Hochzucht\{046\}; Hybrid 80-3\{072\}; Jubilejna\{068\}; Juna\{076\}; Kanred\{1308\}; Ke-Fang 1\{564\}; Stabil\{072\}; Viginta\{071\}; Vrakunski\{072\}. v2: Victor Sr6 Sr8a\{979\}; Glenlea Sr6 Sr9b\{327\}; Qing-Chung 5 Sr6 Sr11\{564\}; An-Hewi II Sr8a\{564\}; Erythrospermum 974 Sr8a\{072\}; N.P. 789 Sr11\{1555\}; Jing-Hong Sr17\{564\}; Jing-Hong 2 Sr17\{564\}; Amika Sr31\{076\}; Dong-Xie 3 Sr31\{563\}; Dong-Xie 4 Sr31\{563\}; Istra Sr31\{076\}; Solaris Sr31\{076\}; Beijing 10 SrTmp\{564\}.
Sr6\{687\}. [SrKa1\{1167\}]. 2D\{1293,1308,1577\}.2DS\{942\}. i: I Sr6-Ra\{828\}; Kenya 58/10 ${ }^{*}$ Marquis 468,675$\}$; Sr6/9* ${ }^{*}$ LMPG \{685\}. s: CS*5/Red Egyptian 2D\{1308\}. v: Africa $43\{669\}$; Eureka\{468,844\}; Kenya stocks\{669,670,673,687,689,1167,1557\}; McMurachy\{679\}; Shield\{198\}. v2: Bowie Sr8a\{1553\}; Eurga Sr11\{1553\}; Fortuna Sr7a\{679\}; Gamut Sr9b Sr11\{1555\}; Glenlea heterogeneousSr5 Sr9b\{327\}; Kentana 52 Sr7a\{678,1577\}; Kiric 66 Sr7b\{979\}; Lerma Rojo 64 Sr7b Sr9a\{979\}; No. 466 Sr9b Sr10\{689\}; Red Egyptian Sr8a Sr9a\{687,1308\}; Siete Cerros Sr11\{033\}; Victor I Sr5 Sr8a\{979\}.
See also \{1553\}.
Sr7\{830\}. 4A\{671,830,1293\}.4AL\{939,1308\}.
Sr7a\{830\}. [Sr7\{687\}]. i: Egypt Na101/6 ${ }^{*}$ Marquis $\{468\}$; Kenya 117A/6 ${ }^{*}$ Marquis $\{468\}$; Sr7a/9* LMPG\{685\}. s: CS* $7 /$ Kenya Farmer 4B\{830\}; CS ${ }^{*} 8 /$ Sapporo 4B\{830\}. v: Egypt Na101\{669\}; Kenya stocks\{669,670,673,687,689\}; Sapporo Haru Komugi Ichigo\{689\}. v2: Fortuna Sr6\{679\}; Kentana 52 Sr6\{689\}; French Peace Sr9a Sr13\{680\}; Egypt Na95 Sr9b Sr10\{687\}; W3746 Sr12\{1371\}; Khapstein Sr13 Sr14\{674\}.
Sr7b\{830\}. i: I Sr7b-Ra\{828\}. v2: Warigo Sr2 Sr17\{499\}; Kiric 66 Sr6\{979\}; Roussalka Sr8a\{979\}; Red Bobs Sr10\{308\}; Nell Sr17\{1565\}; Spica Sr17\{939\}; Marquis Sr18 Sr19 Sr20\{675,830\}.
Sr8. 6A\{1293,1308\}.6AS\{929,1368\}.

Sr8a\{1368\}. [Sr8\{687\}]. i: I Sr8a-Ra\{828\}; Red Egyptian/10*Marquis\{686\}; Sr8a/9 ${ }^{*}$ LMPG\{685\}. s: CS* $5 /$ Red Egyptian 6A\{1308\}. v: Marimp 3\{979\}; Mentana\{844\}; Strampelli\{979\}. v2: An-Hewi II Sr5\{564\}; E-Gan-Zao Sr17\{564\}; Erythrospermum 974 Sr5\{072\}; Frontana Sr9b\{689\}; Golden Valley Sr17\{979\}; Hartog Sr2 Sr12\{127\}; Magnif G Sr9b\{689\}; Pitic 62 Sr9b\{033\}; Red Egyptian Sr6 Sr9a\{687\}; Rio Negro Sr9b\{689\}; Roussalka Sr7b\{979\}; Suneca Sr2 Sr17\{485\}; Victor 1 Sr5 Sr6\{979\}.
$\boldsymbol{S r 8 b}\{1368\}$. [SrBB]. v: Barleta Benvenuto $\{1368\}$; Klein Titan\{1368\}. v2: Bezostaya Sr5\{979\}; Klein Cometa Sr30\{1368\}.
Sr9\{676\}. 2B $\{671,677,828,1308\} .2 B L\{944,946,951,1307,1582\}$.
Sr9a\{676\}. [Sr9\{687\}]. i: I Sr9a-Ra\{828\}; Red Egyptian/10* Marquis $\{686\}$;
Sr9a/9 ${ }^{*}$ LMPG $\{685\}$. s: CS ${ }^{*} 4 /$ Red Egyptian 2B $\{1308\}$. v2: Red Egyptian Sr6 Sr8a\{687\}; French Peace Sr7a Sr13\{680\}; Excel Sr8a Sr17\{752\}.
Sr9b\{468\}. [Sr9\{687\},SrKb1\{468\}]. i: Kenya 117A/10*Marquis\{686\}; Sr9b/10 ${ }^{*}$ LMPG $\{685\}$. s: CS ${ }^{*} 7 /$ Kenya Farmer 2B $\{939\}$. v: Gamenya\{844\}; Kenya stocks\{669,670,673,687,689,1557\}. v2: Egypt Na95 Sr7a Sr10\{636\}; Festival Sr15\{1553\}; Frontana Sr8a\{689\}; Gamut Sr6 Sr11\{1555\}; Glenlea Sr5 Sr6 heterogeneous 327$\}$; Kenora Sr15\{1553\}; Magnif G Sr8a\{689\}; No. 466 Sr6 Sr10\{689\}; Pitic 62 Sr8a\{033\}; Rio Negro Sr8a\{689\}; Robin Sr11\{879\}; Veadeira Sr10\{687\}.
See also $\{1553\}$.
Sr9c.Originally reserved for Sr36.
Sr9d\{678,831\}. [Sr1\{047,676,677\}]. i: Hope/10*Marquis $\{677\}$; H-44/10* ${ }^{*}$ Marquis $\{677\}$; I Hope 2B-Ra\{828\}; Sr9d/8* ${ }^{*}$ MPG\{685\}. v: Hopps Sr2\{1040\}. v2: Lancer Sr2 Sr17\{679\}; Scout Sr2 Sr17\{679\}. tv: Arnautka\{939\}; Mindum\{939\}; Spelmar\{939\}.
Sr9e\{951\}. [Srd1v\{642\},Srv\{1391\}]. v: SST 16\{1324\}; SST 33\{785\}; SST 66\{785\}; SST 3R\{1324\}; Vernstein\{845\}. v2: Combination III Sr36\{841\}; Sunstar Sr8a Sr12\{939\}. tv: Vernal emmer \{1391\}; CI 7778\{845\}; Sr9e occurs in many tetraploid wheats $\{939,1378\}$.
Sr9f\{826\}. v: Chinese Spring\{826\}; Not present in the near-isogenic I Sr9a-Ra\{826\}.
Sr9g\{965\}. s: CS* ${ }^{*}$ /Marquis 2B Sr16\{965\}; CS**/Thatcher 2B Sr16\{965\}. v2:
Hochzucht Sr5 Sr12\{965\}; Lee Sr11 Sr16\{965\}; Celebration Sr12 Sr16\{965\}; Eagle Sr26\{842\}. tv: Acme\{965\}; Iumillo\{965\}; Kubanka\{965\}.
See also \{504\}.
Sr10\{687\}. 2B\{686,939\}. i: Egypt Na95/4* ${ }^{*}$ Marquis $\{468\}$. v: Federation\{939\}; Geneva\{1412\}; Hazen\{049\}; Kenya stocks\{669,670,673,687\}. v2: Egypt Na95Sr7a Sr9b\{687\}; No. 466 Sr6 Sr9b\{689\}; Red Bobs Sr7b\{308\}.
Sr11\{468\}. [Sr11\{687\},Sr12\{687\}]. 6B\{671,1143,1293,1309\}.6BL\{1297\}. i: I Sr11Ra $\{828\}$; Lee/10 ${ }^{*}$ Marquis $\{686\}$. s: CS $^{*} 7 /$ Kenya Farmer $6 \mathrm{~B}\{830\}$; CS ${ }^{*} 9 /$ Timstein 6B\{1308\}. v: Charter\{844\}; Flevina\{072\}; Gabo\{687\}; Kenya stocks\{670,673,844,1557\}; Sonora $64\{033\}$; Sylvia\{071\}; Timstein\{687,1308\}; Tobari 66\{033\}; Yalta\{844\}. v2: Eurga Sr6\{1553\}; Gamut Sr6 Sr9b\{1555\}; Lee Sr9g Sr16\{687\}; N.P. 790 Sr5\{1555\}; QingChung 5 Sr5 Sr6\{564\}; Robin Sr9b\{879\}; Prospect SrWld\{197\}; See also\{1553\}.
A resistance gene allelic with Sr11 was found in Chinese Spring \{938\}, but the P. graminis culture for its detection was lost.
Sr12\{1332\}. Recessive.
3B\{1332,682\}.3BS\{968\}. s: CS*7/Marquis Selection 3B Sr16\{1332\}; CS*5/Thatcher 3B Sr16\{1332\}. v: Marquillo\{682\}; Tincurrin\{939\}; Windebri\{939\}. v2: W3746 Sr7a\{1371\}. tv: Postulated for several durums $\{1378\}$.
Sr12 is more widespread and probably more effective in conferring resistance than is usually acknowledged \{939\}.

Sr13\{674\}. 6AL $\{929\}$. i: Khapstein $/ 10^{*}$ Marquis $\{686\}$; $\operatorname{Sr} 13 / 9^{*}$ LMPG\{685\}. v2: French Peace Sr7a Sr9a\{680\}; Khapstein Sr7a Sr13 Sr14\{674\}. tv2: Khapli Sr14\{674\}.
Sr14\{674\}. 1BL\{933\}. i: Khapstein/10*Marquis\{686\}. v: Line A\{933\}. v2: Khapstein Sr7a Sr13\{674\}. tv2: Khapli Sr13\{674\}.
Sr15\{1554\}. 7A\{1293,1554\}.7AL\{1305\}. v: Present in stocks possessing Pm1 and Lr20\{931,1554\}; See Reaction to Brumeria graminis and Reaction to P. triticina. ma: Associated with clustered markers $\{0323\}$.
Sr16\{830\}. [Srrl2\{1238\}]. 2B\{830,1308\}.2BL\{1307\}. i: I Sr16-Ra\{828\}; I Th3B-Ra\{832\}. s: CS* ${ }^{*} /$ Marquis 2B $\operatorname{Sr} 9 g\{1581\}$; CS ${ }^{*} 4 /$ Thatcher 2B $\operatorname{Sr} 9 g\{1308\}$; CS* $5 /$ Thatcher 3B Sr12\{832\}. v2: Thatcher Sr5 Sr9g Sr12\{939\}; Lee Sr9g Sr11\{939\}.
Sr17. Recessive. [sr17\{964\}]. 7B\{771\}.7BL\{964\}. s: CS* $6 /$ Hope 7B $\{964\}$. v2: E-Gan Zeo Sr8a\{564\}; Golden Valley Sr8a\{979\}; Jing-Hong 1 Sr5\{564\}; Jing-Hong 2 Sr5\{564\}; Lancer Sr2 Sr9d\{679\}; Nell Sr7b\{1565\}; Scout Sr2 Sr9d\{679\}; Suneca Sr2 Sr8a\{485\}; Present in many stocks possessing Pm5\{964\}; See Reaction to Blumeria graminis.
Sr18\{054\}. [SrG2\{844\},Srrl1\{1238\},Srmq1 0099$\}, S r P s 1\{1263\}, S r M n 1\{1263\}]$. 1D $054,1308,1582\}$. i: I Hope 1D-Ra\{828\}; Sr18/8* ${ }^{*}$ LMPG\{685\}. s: CS**/Hope 1D $\{1308\}$. v: Present in the majority of wheat stocks\{828\}; Stocks not possessing Sr18: Brevit $\{054\}$; Chinese Spring\{828\}; Eureka\{054\}; Federation\{054\}; Gular $\{054\}$; Kenya C6042\{054\}; Koala\{054\}; Little Club \{828\}; Morocco\{054\}; Norka\{054\}; Prelude\{828\}; Yalta $\{054\}$.
Sr19\{029\}. [Srmq2\{099\}]. 2B\{029\}.2BS\{1582\}. v: Mq-B\{029\}. v2: Marquis Sr7b Sr18 Sr20\{029\}.
Sr20\{029\}. [Srmq3\{1238\},Srrl3\{1238\}]. 2B\{029\}. v: Mq-C\{029\}; Rl-C\{029\}. v2: Reliance Sr5 Sr16 Sr18\{029\}; Marquis Sr7b Sr18 Sr19\{029\}.
Sr21\{1460\}. 2AL\{1460,1464\}. i: Sr21/8* ${ }^{\text {LMPG }}$ (685\}. v: Hexaploid derivatives of T. monococcum $\{939\}$. tv: Tetraploid derivatives of T. топососсит $\{939\}$. dv: Einkorn\{1460\}; Various monococcum accessions. See also Sr 45 which has similar specificity to Sr21.
Sr22\{1460\}. 7A\{649\}.7AL\{1460\}. i: Marquis ${ }^{*} 4 / /$ Stewart $^{*} 3 /$ T. monococcum $\{649,1460\}$; Sr22/9 ${ }^{*}$ LMPG $\{685\}$; Others $\{1112\} . ~ v: ~ C S / 3 / S t e i n w e d e l * 2 / / S p e l m a r / T . ~ b o e o t i c u m ~\{1460\} ; ~$ Schomburgk \{880\}; Steinwedel*2//Spelmar/T. boeoticum $\{1460\}$; Others $\{1112\}$. tv: Spelmar/T. boeoticum $\{1460\}$; Stewart ${ }^{*} 6 / T$. monococcum RL $5244\{649\}$. dv: Various T. monococcum accessions\{649,1460\}. ma: Hexaploid derivatives with Sr22 carried 'alien' segments of varying lengths; the shortest segment was distal to Xpsr129-7A\{1112\}; See also 0158$\}$.
Sr23\{950\}. The following chromosome locations are consistant with the finding that the first location was based on Rescue monosomics. Rescue differs from CS by a 2B-4B reciprocal translocation \{939\}. 4B\{950\}.2BS\{939\}. v: Exchange\{950\}; Warden\{950\}; Sr23 is always associated with $\operatorname{Lr} 16\{950\}$. v2: Etoile de Choisy Sr29\{950\}.
Sr24\{956\}. Derived from Thin. elongatum.
3DL.
3DL =T3DS.3DL-3Ae\#1L $\{956,389\} . \mathbf{i :}$:Sr24/9**MPG $\{685\}$; Sears' 3D/Ag translocations\{956,1300\}. v: Agent\{956\}; Blueboy II\{956\}; Collin\{901\}; Cloud\{956\}; Cody\{1284\}; Fox\{956\}; Gamka\{785\}; Karee\{785\}; Kinko\{785\}; Palmiet\{785\}; Sage\{825,1024\}; SST 23\{1324\}; SST 25\{785\}; SST 44=T4R\{1324,785\}; SST 102\{785\}; Torres 128$\}$; Wilga\{785\}. v2: Siouxland Sr31\{1283\}. v: List of Australian genotypes $\{0340\}$.
1BL.T1BL = 1BS-3Ae\#1L\{600,389\}.tr:Amigo\{1463,600,389\}; Teewon\{600,389\}; Note:Amigo also carries a 1AL.1RS translocation with resistance from rye $\{1463\}$.
3Ae\#1.su:Chinese Spring 3Ag \{3D $\}$ \{1304\}; TAP48\{389\}.

Sr24 is completely linked in coupling with $\operatorname{Lr} 24\{956\}$ and often with red grain colour. See Reaction to P. triticina.
Sr25\{956\}. Derived from Thin. elongatum.
7DL = T7DS.7DL-7Ae\#1L\{291,956,388,657\}.i:Sears' CS 7D/7Ag translocations\{956,1300\}; Sr25/9*LMPG\{685\}. v: Agatha Sr5 Sr9g Sr12 Sr16 \{956\} = T4\{1323\}; Mutant $28\{388\}$.
7AL = T7A-7Ae\#1L\{330\}.v:Sears' 7A/7Ae\#1L No. 12\{330,1304\}; Sears' 7D/7Ag\#11 carries neither Sr25 nor Lr19\{939\}.
7Ae\#1L.su:Chinese Spring + 7Ae\#1L\{7D\}\{1304\}; .
See Lr19, reaction to Puccinia triticina.
Sr25/Lr19 often show complete linkage in wheat \{956\}.
Knott \{681\} obtained two mutants (28 and 235) of Agatha with reduced levels of yellow pigment in the flour. One of these mutants lacked Sr25. Marais \{890\} reported that a gene very similar to Sr 25 was present in the putative Inia 66 x Thinopyrum distichum derivative, Indis. Marais $\{890,892\}$ also obtained mutants with reduced yellow pigment in Indis derivatives and some of these lacked Sr25.
Sr26\{956\}. Derived from Thin. elongatum. 6AL $\{364\}=$ T6AS.6AL-6Ae\#1L $\{388,389\}$. i: Sr26/9* ${ }^{*}$ LMPG\{685\}. v: Avocet\{364\}; Flinders\{1449\}; Harrier\{939\}; Jabiru\{956\}; King\{1451\}; Kite\{956\}; Knott's 6A-6Ae\#1L translocation to Thatcher\{672\}; Takari\{253\}. v2: Bass $\operatorname{Sr} 36\{1450\}$; Eagle $\operatorname{Sr} 9 g\{956\}$. ma: Detected with several RFLP probes $\{0138\}$.
Sr27. Derived from S. cereale.
3A $($ T3A-3R $)=$ T3AS.3R\#1S $\{003,896,389\} . \mathbf{i}: S r 27 / 9^{*}$ LMPG\{685\}. v: WRT wheat-rye translocation, available in CS, Thatcher and Pembina backgrounds. Translocated from Imperial rye to Chinese Spring by Acosta\{003\}; Widespread in triticales $\{966,1384\}$. 3B = T3BL.3R\#1S\{896\}.:.
3A = T3A.3RS\{896\}.v:W964 = 3RS.3AL.1/4* Inia 66\{\}; W968 = 3RS.3AL.1/5* Condor $\}$; W970 $=$ 3RS.3AL. $88 / 5^{*}$ SST3 $\}$.
3B $=$ T3BL.3RS $\{896\} . v: W 966=3 R S .3 B L .26 / 4^{*}$ Inia $66\}$.
Sr28\{932\}. 2BL\{932\}. i: Line AD\{932\}. v2: Kota Sr7b Sr18\{932\}.
Sr29\{313\}. [SrEC\{955\}]. 6DL\{313\}.6DS\{1626\}. i: Prelude/8*Marquis//Etoile de Choisy\{313\}. v: Hana\{071\}; Hela\{076\}; Mara\{068\}; Slavia\{076\}; Vala\{076\}. v2: Etoile de Choisy Sr23\{955\}.
Sr30\{688\}. [SrW]. 5DL 6688$\}$. i: Sr30/7 ${ }^{*}$ LMPG - Lines 1, 2, and $3\{685\}$. v: Festiguay\{688\}; Mediterranean W1728\{1369\}; Webster\{688\}. v2: Klein Cometa $\operatorname{Sr} 8 b\{1368\}$; Relatively common in Australian and Mexican wheats. Various unnamed accessions\{208,1321\}.
Sr31. Derived from S. cereale.
1B = T1BL.1RS = T1BL.1R\#1S\{389\} or 1R(1B).i:MA1 and MA2 four-breakpoint double translocation lines 1RS-1BS-1RS.1BL in Pavon\{0084\}. v: Amika \{heterogeneous\} Sr5\{076\}; Cougar\{0267\}; Derivatives of Petkus rye - see Lr26, Yr9. Feng-Kang 2\{563\}; Feng-Kang 8\{563\}; Gamtoos\{785\}; GR876\{753\}; Jing-Dan 106\{563\}; Jan 7770-4\{563\}; Lu-Mai $1\{563\}$; Rawhide (heterogenous)\{0267\}; Yi 78-4078\{563\}. v2: Dong Xie 3 Sr5\{563\}; Dong Xie 4 Sr5\{563\}; Istra Sr5\{076\}; Solaris Sr5\{076\}; Siouxland Sr24\{1283\}. tv: Cando*2/Veery $=$ KS91WGRC14\{381\}. ma: 1BS/1RS recombinants 4.4 cM proximal to Gli-B1/Glu-B3\{0084\}; Several markers tightly linked with Sr31 were indentified in\{0377\}.
Sr32. Derived from Ae. speltoides.
2A \{939,1304\} $=$ T2AL.2S\#1L-2S\#1S \{389\}.v:C95.24\{389\}.
2B $\{1304\}=$ T2BL-2S\#1S $\{389\} . v: C 82.1=$ P80-14.1-2 $\{389\}$.
2D $\{1304\}=$ T2DL-2S\#1L.2S\#1S $\{389\} . v: C 82.2=$ P80-139.1-4\{389,1304\}; C82.3 $=$ P80-132.2-2\{939,1304\}; C82.4 = P80-153.1-2\{939,1304\}.

Sr33. (linked with Gli-D1). [SrSQ\{650\}]. 1DL \{650\}.1DS\{620\}. v: RL $5405=$ Tetra Canthatch/Aegilops squarrosa RL 5288\{650\}. ma: Xmwg60-1D-5.8cM - Sr33-2.2cM -Xwmg2083-1 $\{0360\}$.
Sr34\{967\}. Derived from Ae. comosa.
2A $\{967\}=$ T2AS-2M\#1L.2M\#1S\{389\}.v:CS 2A-2M 4/2\{967\}.
2D $\{967\}=$ T2DS-2M\#1L.2M\#1S\{389\}.i:Sr34/6* ${ }^{*}$ LMPG\{685\}. v: Compair\{967\}; CS 2D-
2M 3/8\{967\}; Various addition, substitution and translocation lines with $\operatorname{Yr} 8\{967\}$.
2M $\{967\}$.su:Chinese Spring 2M(2A)\{967\}.
Sr35\{957\}. [SrTm1 14522$\}]$. 3AL\{957\}. v,tv: Tetraploid and hexaploid derivatives of T. monocoссит\{957\}. dv: T. monococcum C69. 69 Selection\{957\}; G2919\{957\}.
Sr36\{939\}. [SrTt1\{949\}]. 2BS \{939\}. i: Sr36/8*LMPG\{685\}. v: Arthur\{939\}; Arthur 71\{1324\}; Flemink\{1324\}; GK Kincso\{0235\}; Gouritz\{1324\}; Idaed 59; Maris Fundin\{070\}; Mengavi\{949\}; SST 101\{1324\}; SST 107\{785\}; Timvera\{949\}; T. timopheevii derivatives \{949\}; Zaragoza\{785\}; Others\{572\}. v2: Bass Sr26\{1450\}; Combination III Sr9e\{939\}; Timson Sr5 Sr6\{939\}. tv: T. timopheevii\{949\}.
Sr37\{939\}. [SrTt2\{949\}]. 4BL\{939\}. v,tv: T. timopheevii and derivatives\{484,949\}; Line W\{949\}.
Sr38\{062\}. Derived from Ae. ventricosa. 2AS $\{062\} .6 \mathrm{M}^{\mathrm{v}}=2 \mathrm{MS}-6 \mathrm{MS} .6 \mathrm{ML}$ or 2MS6ML.6MS\{0009\}. i: RL $6081=$ Thatcher + Lr37. This line will carry additional genes from Thatcher. v: Moisson derivatives Mx12 and Mx22\{0213\}; VPM1\{062\}.
Sr38 is linked with Lr37 and Yr17. See Reaction to P. triticina Lr37 and P. striiformis tritici Yr17
Sr39\{646\}. Derived from Ae. speltoides. 2B \{651\}. v: RL $5711\{646,651\}$. tv: Amphiploid RL 5347 = Ae. speltoides/T. monococcum\{651\}. ma: Sr39 is closely linked with Lr35\{651\}; A SCAR marker was developed\{9923\}.
Although Sr39 produces similar responses to Sr32, also derived from Ae. speltoides, recombination studies based on three crosses showed independent inheritance \{646\}. Sr39 segregated independently of $\operatorname{Lr} 13\{651\}$.
Sr40\{302\}. Derived from T. araraticum. $2 \mathrm{BS}\{302\}=$ T2BL/2G\#2S $\{389\}$. i: RL $6087=\mathrm{RL}$ $6071{ }^{*} 7 /$ PGR 6126; RL $6088=$ RL $6071{ }^{*} 7 /$ PGR 6195\{302\}. tv: . . araraticum PGR 6126\{302\}; PGR 6195\{302\}.
Sr41\{1215\}. 4D\{1215\}. v: WDR-B1\{1214\}. v2: Waldron Sr5 (heterogeneous) Sr11 (heterogeneous).
Sr42\{667\}. 6DS\{938\}. v: Norin 40\{938\}.
Sr43. Derived from Thin. elongatum. 7DL = T7DL-7Ae\#2L.7Ae\#2S\{657,389\}.tr:KS10-2\{653\}. 7D = T7DS.7Ae\#2L\{657,389\}.tr:KS23-9\{653\}; KS24-1\{653\}; KS24-2\{653\}.
Sr44\{389\}. Derived from Thin. intermedium.
T7DS-7Ai\#1L.7Ai\#S 7Ai\#1L\{389\}.v:Line 86.187\{939\}; Several 7A-7Ai\#1L translocations $\{0089\}$.
7Ai\#2, 7Ai\#2S.su:Group 7 alien substitution lines with 7Ai\#1 and 7Ai\#1S\{939\}. ad:
TAF2 $=\mathrm{L} 1\{169\}$.
Sr45\{894\}. [SrD\{934\},SrX\{1805\}]. 1D\{897\}.1DS\{894\}. v: 87M66-2-1\{894\}; 87M66-56\{897\}; Thatcher + Lr21, RL5406\{894,934\}; Various backcross derivatives developed at PBI Cobbitty\{1461\}. dv: Ae. tauschii RL5289\{894,934\}.
Tests of natural and induced mutants of P. graminis f . sp. tritici indicated that Sr 45 has identical specificity to Sr 21 \{934\}.
SrA\{323\}. v: SW55-1\{323\}; SW56-1\{323\}. v2: SW33-5 Sr9a Sr13\{323\}; SW54-3 Sr9d Sr13\{323\}.
SrR. ma: Several markers tightly linked with $\operatorname{Sr} R$ were identified in $\{0377\}$.

SrTmp\{1230\}. v: Bai-Yu-Bao\{564\}; Beijing 9\{564\}; Beijing 11\{564\}; Fertodi 293\{977\}; Martonvasari 5\{977\}; Mironovska = Mironovskaya 808\{068,977\}; Nung-Ta 139\{564\}; Parker\{977\}; Trison\{1230\}; Triumph 64\{841,1230,977\}; Xuzhou 14\{564\}; Yen-An 15\{564\}. v2: Beijing $10 \operatorname{Sr} 5\{564\}$.
SrWld\{1230\}. v2: Prospect Sr11\{197\}.
SrZdar\{067\}. 1B\{067\}. v: Zdar\{067\}.
Additional temporary designations are listed in $\{1230\}$.
Genotype lists: $\{323,970\}$.
Complex genotypes:
AC Taber: Sr2, Sr9b, Sr11, Sr12\{9905\}.
Centurk: Sr5 \{979\}, Sr6 \{979\}, Sr8a, Sr9a \{979\}, Sr17 \{979\}.
Chris: $\operatorname{Sr} 5\{679,1371\}, \operatorname{Sr} 7 a\{1371\}, \operatorname{Sr} 9 g$ \{1371\}, Sr12 \{1371\}.
Egret: Sr5 \{939\}, Sr8a \{939\}, Sr9b \{939\}, Sr12 \{939\}.
FKN: Sr2, Sr6, Sr7a, Sr8a \{791\}, Sr9b \{791\}.
H-44: Sr2, Sr7b \{677\}, Sr9d \{677\}, Sr17.
Hartog: Sr2 \{127\}, Sr8a, Sr9g, Sr12 \{939\}.
Hope: Sr2 \{677\}, Sr7b \{677\}, Sr9d \{677\}, Sr17.
Kenya Plume: Sr2 \{1370\}, Sr5 \{1370\}, Sr6 \{1370\}, Sr7a \{1370\}, Sr9b \{1370\}, Sr12 \{1370\}
Sr17 \{1370\}.
Khapstein: Sr2, Sr7a, Sr13 \{674\}, Sr14 \{674\}.
Lawrence: Sr2, Sr7b \{939\}, Sr9d, Sr17.
Lerma Rojo 64: Sr2, Sr6, Sr7b \{979\}, Sr9a \{979\}.
Madden: Sr2, Sr9b, Sr11, Sr13 \{842\}.
Manitou: Sr5 \{679\}, Sr6 \{679\}, Sr7a, Sr9g \{965\}, Sr12 \{939\}.
Mendos: Sr7a \{939\}, Sr11 \{879\}, Sr17, Sr36.
Pasqua: $\operatorname{Sr} 5, \operatorname{Sr} 6, S r 7 a, S r 9 b, S r 12$. Gene $\operatorname{Lr} 34$ acted as an enhancer of APR\{9905\}.
PI 60599: Sr7a \{689\}, Sr8a, Sr9b, Sr10.
Selkirk: Sr2 \{499\}, Sr6 \{468\}, Sr7b \{499\}, Sr17, Sr23 \{950\}.
Redman: Sr2, Sr7b \{939\}, Sr9d \{939\}, Sr17.
Reliance: Sr5 \{1308\}, Sr16 \{1238\}, Sr18, Sr20.
Renown: Sr2, Sr7b \{939\}, Sr9d \{939\}, Sr17.
Roblin: Sr5, Sr7a? Sr11, Sr12.
Timgalen: Sr5 \{heterogeneous\} \{1555\}, Sr6 \{1555\}, Sr8a, Sr36.
Thatcher: Sr5 \{1308\}, Sr9g \{965\}, Sr12 \{939\}, Sr16 \{1308\}.
WW15 = Anza = Karamu = T4: Sr5 \{939\}, Sr8a \{939\}, Sr9b \{939\}, Sr12 \{939\}.

88.Reaction to Puccinia striiformis Westend.

Disease: Stripe rust, yellow rust.
88.1. Designated genes for resistance to stripe rust

Yr1\{851\}. [L\{1622\}]. 2A\{877,1610\}.2AL\{940\}. v: Chinese 166\{851\}; Corin\{230\};
Dalee 083$\}$; Durin\{1459\}; E2025\{1267\}; E7700\{1267\}; E8594\{1267\}; Feng-Kang 13\{1610\}; Heines 110\{604\}; Maris Ranger\{1459\}; Maris Templar\{1459\}; Odra\{073\}. v2: Argent Yr3a Yr4a Yr6\{1067\}; Avocet (UK)Yr2 Yr6\{1459\}; Bounty Yr13\{1459\}; Fenman Yr2\{1459\}; Galahad Yr2 \{heterogeneous\} Yr14\{1459\}; Galahad Yr14\{083\}; Ibis Yr2\{604\}; Longbow Yr2 Yr6\{083\}; Mardler Yr2 Yr3a Yr4a Yr13\{604,1459\}; Maris Templar Yr3a Yr4a\{604\}; Marksman \{heterogeneous\} Yr2 Yr13\{1459\}; Mithras Yr2 Yr6\{1459\}; Nudif TP1 Yr3a\{1431\}; Nudif TP3 Yr3c\{1431\}; Nudif TP250 Yr6\{1431\}; Regina Yr2\{073\};

109

 Pathogenic Disease/Pest ReactionRothwell Perdix Yr2\{604\}; Sportsman Yr13\{1459\}; Stetson Yr9\{083\}; Sylvia Yr2\{1430\}; Tadorna Yr2\{1431\}; Virtue Yr13\{083,1459\}.
A report $\{1267\}$ that Kalyansona and Nadadores carried $Y r 1$ is not correct.
Yr2\{851\}. Recessive \{1351\}. [U\{1622\}]. 7B\{746,186,184\}. v: Derius\{230\};
Flevina\{1431\}; Hana\{51,58\}; HD2329\{1352\}; Kalyansona\{1351,1352\}; Laketch\{050\};
Leda\{1430\}; Manella\{1431\}; Merlin\{1622\}; Odra\{071\}; PBW54\{1352\}; PBW120\{1352\};
Slavia\{073,071\}; Soissonais Desprez\{851\}; WG377\{1352\}; WH147\{1352\}; WL711\{1352\};
WL1562\{1352\}. v2: Avocet (U.K.) Yr1 Yr6\{1459\}; Brigand Yr14\{083\}; Cleo
Yr3c\{1457\}; Cleo Yr3c Yr14\{1431\}; Fenman Yr1\{1459\}; Flamingo Yr6\{1430\}; Flevina Yr7\{1430\}; Galahad (heterogeneous) Yr1 Yr14\{1459\}; Garant Yr7\{230\}; Hardi Yr7\{230\};
Heines Kolben Yr6\{611\}; Heines Peko Yr6Yr25\{746\}; Heines VII Yr25\{851\}; Ibis Yr1\{604\}; Lely Yr7\{1430\}; Liberator Yr3c\{1431\}; Longbow Yr1 Yr6\{083\}; Mardler Yr1 Yr3a Yr4a Yr13\{1459\}; Maris Beacon Yr3b Yr4b\{1459\}; Maris Huntsman Yr3a Yr4a Yr13\{604\}; Maris Nimrod Yr13\{1459\}; Marksman Yr1 (heterogeneous) Yr13\{1459\}; Mithras Yr1 Yr6\{1459\}; Nautica Yr9\{1430\}; Norman Yr6\{083\}; Rapier Yr4\{083\}; Rothwell Perdix Yr1\{604\}; Sonalika YrA\{1352\}; Stella Yr3\{1430\}; Sylvia Yr1\{1430\}; Tadorna Yr1\{1431\}; Viginta Yr3a Yr4a\{073,071\}; Wizard (heterogeneous) Yr14\{1459\}; Yamhill Yr3a Yr4a\{181,182, see also, 184\}; Zdar Yr4a\{073\}.
Yr2 originally referred to a gene in Heines VII conferring resistance to European pathotypes.
However, Heines VII possesses an additional resistance gene Yr25 \{1351\} which can be detected with a geographically wider range of pathogen isolates. Yr2 is present in Kalyansona \{1351\} and a range of spring wheats distributed by CIMMYT.
Yr3. Undesignated allele. v: Enkoy\{050\}; Vilmorin 23; Staring\{1430\}. v2: Minister Yr2\{1430\}; Stella Yr2\{1430\}.
Yr3a\{851\}. 1B\{185,184\}. v: Bon Fermier\{1431\}; Nudif TP1\{1431\}; Stephens\{182,184\}.
v2: Argent Yr1 Yr4a Yr6\{1067\}; Cappelle-Desprez Yr4a\{851\}; Druchamp Yr4a\{185,182, see also, 184\}; Hobbit Yr4a Yr14\{604\}; Kinsman Yr4a Yr6\{604\}; Mardler Yr1 Yr2 Yr4a Yr13\{1459\}; Maris Huntsman Yr2 Yr4a Yr13\{604\}; Maris Freeman Yr4a Yr6\{604\}; Maris Ranger Yr4a Yr6\{604\}; Nord Desprez Yr4a\{182,184\}; Top Yr4a\{230\}; Viginta Yr2 Yr4a; Yamhill Yr2 Yr4a\{182\}; Zdar Yr4a\{073,071\}.
Yr3b $\{851\}$. v: Chen \& Line $\{182\}$ found that a second gene in Hybrid 46 - presumably this gene - was not located at the Yr3 locus. v2: Hybrid $46 \mathrm{Yr} 4 b\{851\}$.
Yr3c\{851\}. 1B\{184\}. v: Minister\{851,182,184\}. v2: Cleo Yr2\{1430\}; Maris Beacon Yr2 Yr4b\{1459\}.
Yr4. Undesignated allele. v: Kenya Kubangu\{050\}. v2: Avalon Yr14\{083\}; Rapier Yr2 Yr14\{083\}.
Yr4a\{851\}. 6B\{185,184\}. v: Vilmorin23\{184\}. v2: Argent Yr1 Yr3a Yr6\{1067\}; Cappelle-Desprez Yr3a\{851\}; Druchamp Yr3a\{182\}; Hobbit Yr3a Yr14\{604\}; Huntsman Yr2 Yr3a Yr13\{604\}; Kinsman Yr3a Yr6\{604\}; Maris Ranger Yr3a Yr6\{604\}; Maris Freeman Yr3a Yr6\{604\}; Mardler Yr1 Yr2 Yr3a Yr13\{1459\}; Nord Desprez Yr3a\{182\}; Top Yr3a\{230\}; Viginta Yr2 Yr3a\{073,071\}; Yamhill Yr2 Yr3a\{182,185, see also, 184\}; Zdar Yr3c\{073,071\}.
Yr4b\{851\}. 6B\{184\}. v: Avalon\{1160\}; Opal\{1431\}; Staring\{1430\}. v2: Hybrid 46 Yr3b\{851,182, see also, 184\}; Maris Beacon Yr2 Yr3b\{1160,1459\}; Nudif TP12 Yr3c\{1431\}; Stella Yr2\{1430\}.
Yr5\{877\}. 2BL\{034\}. v: By 33\{03102\}; E5557\{1267\}; E8510\{1267\}; T. spelta album\{877\}; Seven spelt accessions from Europe and Iran\{640\}. ma: Yr5-10.5 \& 13.3cM - Xgwm501$2 B\{03102\}$.
Yr6\{877\}. [B\{1622\}]. 7B\{746\}.7BS\{331\}. v: Austerlitz\{230\}; Fielder\{181\}; Heines Kolben\{1622\}; Koga II\{746\}; Maris Dove\{604\}; Recital\{230\}; Takari\{368\}. v2: Argent Yr1 Yr3a Yr4a\{1067\}; Avocet (UK) Yr1 Yr2\{1459\}; Flamingo Yr2\{1430\}; Heines Peko

110 Pathogenic Disease/Pest Reaction

Yr2\{746,877\}; Kinsman Yr3a Yr4a\{604\}; Kolben Yr2\{611\}; Longbow Yr1 Yr2\{083,1459\}; Maris Freeman Yr3a Yr4a\{604\}; Maris Ranger Yr3a Yr4a\{604\}; Mithras Yr1 Yr2\{1459\}; Norman Yr2\{083,1459\}; Nudif TP241 Yr7\{1431\}; Nudif TP250 Yr1\{1431\}; Orca Yr3c\{1431\}; Pavon 76 Yr7\{284\}; Penjamo 62 (heterogeneous) Yr18\{1562\}. tv: Duilio\{192\}; Latino\{192\}; Norba\{192\}; Quadruro\{192\}; Rodeo (heterogeneous)\{192\}.
Yr7\{877\}. 2B\{612,1429\}.2BL\{965\}. v: Present in many hexaploid wheats with Sr 9 g see $\{965\}$; Brock $\{083\}$; Lee; Nudif TP257\{1431\}; PBW12\{1352\}; Prinqual\{230\}; Renard\{083\}; Talent\{230\}; Tango\{230\}; Tommy 0083$\}$; WL2265\{1352\}. v2: Donata Yr9\{1430\}; Flevina Yr2\{1431\}; Garant Yr2\{230\}; Hardi Yr2\{230\}; Lely Yr2\{1430\}; Nudif TP241 Yr6\{1431\}; Pakistan 81 = Veery\#5 Yr9\{284\}; Pavon 76 Yr6\{284\}; Reichersberg 2S Yr25\{0010\}. tv: Iumillo\{965\}; but not present Acme and Kubanka which also carry Sr9g\{965\}.
Yr8\{1217,1218\}. Derived from Ae. comosa.
2D = T2D-2M \{1218\} = T2DS-2M\#1L.2M\#1S\{389\}.tr:Chromosome 2D-2M translocations in Hobbit Sib and Maris Widgeon\{1016\}; Compair\{1217,1218\}; CS 3D/2M 3/8\{967\}; See also Sr34 and\{967\}.
$2 \mathrm{~A}=2 \mathrm{~A}-2 \mathrm{M}=\mathrm{T} 2 \mathrm{AS}-2 \mathrm{M} \# 1 \mathrm{~L} .2 \mathrm{M} \# 1 \mathrm{~S}\{389\} . \operatorname{tr}:$ CA 2A/2M 4/2\{967\}.
2M-1.su:CS 2M\#1(2A)\{967\}.
Yr9\{878\}. Derived from S. cereale.
1B = 1RS.1BL.v:Almus\{998\}; Aurora\{1623\}; Benno\{998\}; Bezostaya II\{998\};
Clement\{1430,1532\}; Cougar\{0267\}; GR876\{753\}; Kavkaz\{1623\}; Lovrin 10\{998\};
Lovrin 13\{998\}; Mildress\{1027\}; Perseus\{998\}; Predgornaya\{998\}; Rawhide
(heterogeneous)\{0267\}; Salmon\{998\}; Sarhad 82\{284\}; Skorospelka 35\{998\}; Veery\{986\};
Weique\{1627\}; Winnetou\{998\}; Riebesel 47/51\{878,1623\}; St 2153/63\{997\};
Weihenstephan 1007/53\{1623\}. v2: Pakistan $81=$ Veery\#5 $\operatorname{Yr} 7\{284\}$. tv: Cando*2/Veery, KS91WGRC14\{381\}.
1R(1B)\{997,1623\}.su:Burgas 2\{998\}; Clement\{1160\}; Lovrin 13\{998\}; Mildress\{998\}; Mironovskaja $10\{998\}$; Neuzucht $\{1623\}$; Orlando\{1623\}; Roseana\{068\}; Saladin\{997\}; Salzmunder Bartweizen\{1623\}; St 14/44\{998\}; Weique\{1627\}; Wentzel W\{1623\}; Winnetou\{1027\}; Zorba\{998\}; See also\{050\}.
Chromosome status not specified.v:Baron\{083\}; Branka\{071\}; Danubia\{068\}; Hammer \{083\}; Iris\{068\}; Kromerzhizhskaya\{1149\}; Lyutestsens 15\{1149\}; Roxana\{068\}; Sabina\{068\}; Selekta\{068\}; Shtorm\{1149\}; Solaris\{068\}; Stuart\{083\}. v2: Stetson Yr1\{083\}; Nautica Yr2\{1430\}; Agra Yr3\{068,071\}; Sparta Yr3\{071\}; Donata Yr7\{1430\}. ma: Several markers tightly linked with $Y r 9$ were identified in $\{0377\}$.
Yr10\{878\}. [YrVav\{0262\}]. 1B\{641\}.1BS\{1002\}. v: Moro\{878\}; PI 178383\{878\}; QLD709 = Janz*2/T. vavilovii $\{0262\}$; T. spelta 415\{641\}; T. vavilovii AUS 22498\{0262\}. ma: A SCAR marker was described in\{0261\}; QLD709 and T. spelta415, both with white glumes, failed to amplify the SCAR sequence, but both carried unique alleles at the Gli-B1 and Xpsp3000-1B loci\{0262\}. These differed from the Moro source of Yr10. Yr10-1.5cM -Gli-B1-1.1cM - Xpsp3000-1B\{0262\}.; Yr10-1.2cM - Xpsp3000-1B - 4.0cM - GliB1\{0321\}; Cosegregation between a RGA marker RgaYr10a and Yr10 was reported in \{0376\}.
Yr11. Adult plant resistance. [R11\{1157\}]. v: Joss Cambier\{606\}. v2: Heines VII Yr2 Yr25 see $\{970\}$.
Yr12. Adult plant resistance. [R12\{1157\}]. v: Fleurus\{1158\}; Frontier\{1159\}; Pride\{1157\}. v2: Armada Yr3a Yr4a\{1160,081\}; Mega Yr3a Yr4a\{1157,1160\}. v: Waggoner Yr3a Yr4a Yr6\{1158\}.
Yr13. Adult plant resistance. [R13\{1157\}]. v2: Hustler Yr1 Yr2 Yr3a Yr4a\{083,1459\}; Mardler Yr1 Yr2 Yr3a Yr4a\{1459\}; Marksman Yr1 \{heterogeneous\} Yr2 Yr3a Yr4a\{1459\}; Bounty Yr1 Yr3a Yr4a\{1459\}; Sportsman Yr1 Yr3a Yr4a\{1459\}; Virtue Yr1 Yr3a

111

Yr4a\{083,1158,1459\}; Guardian Yr2\{082\}; Maris Huntsman Yr2 Yr3a Yr4a\{083,604,1459\}; Pageant Yr2 Yr3a Yr4a\{082\}; Professor Marchal Yr2 Yr3a Yr4a\{607\}; Maris Nimrod Yr2 Yr3a Yr4a\{607,1157,1459\}; Brigand Yr2 Yr3a Yr4a Yr14\{609\}; Gawain Yr2 Yr3a Yr4a Yr14\{081\}; Copain Yr3a Yr4a\{1158\}; Kinsman Yr3a Yr4a Yr6\{1459\}.
Yr14. Adult plant resistance. [R14\{1157\}]. v: Kador\{1158\}; Score\{1157\}; Wembley\{610\}. v2: Avalon Yr3b Yr4b\{083,1459\}; Brigand Yr2 Yr3a Yr4a Yr13\{083,609,1459\}; Galahad Yr1 Yr2 (heterogeneous) Yr3a Yr4a\{083,1459\}; Gawain Yr2 Yr3a Yr4a Yr13\{081\}; Hobbit Yr3a Yr4a\{1459,1157\}; Maris Bilbo Yr3a Yr4a\{1157,1459\}; Moulin Yr6\{083\}; Rapier Yr2 Yr3b Yr4b\{083\}; Wizard Yr2 (heterogeneous) Yr3b Yr4b\{083,1459\}.
Yr15\{432,969\}. 1BS\{939,969\}. v: Agrestis\{0330\}; Boson\{0330\}; Hexaploid derivatives of T. dicoccoides G-25\{432,466\}; V763-2312\{969\}; V763-254\{969\}. tv: T. dicoccoides G$25\{432,431,466\}$; D447 derivatives B1, B2, B9, B10\{1434\}. ma: Xgwm33-1B-5cM Yr15\{9904\}; Xgwm33-1B-4.5cM - Yr15-5.6cM - UBC199200-5.6cM Nor-B1\{0110\}. ma,tv: OPB131420-27.1 cM - Yr15-11.0 cM - Nor-B1\{1434\}.
Yr16\{1598\}. Adult plant resistance. 2D\{1598\}. v: Bersee\{1604\}; Cappelle-Desprez\{1598\}.
Yr17\{062\}. 2AS\{062\}.2AS-6M ${ }^{\mathrm{v}} .6 \mathrm{M}^{\mathrm{v}}=2 \mathrm{MS}-6 \mathrm{MS} .6 \mathrm{ML}$ or 2MS-6ML.6MS\{0009\}. v: See Lr37 (Reaction to Puccinia triticina) and Sr38 (Reaction to Puccina graminis); Arche\{0044\}; Balthazar 0044$\}$; Brigadier $\{0044$ \}; Cordial \{0044\}; Eureka\{0044\}; Hussar 0044$\}$; Lynx\{0044\}; Pernel\{0044\}; Renan\{0044\}; RL 6081\{939\}; Genotype list in\{02105\}. ma: Yr17 was closely linked to the SCAR marker SC-Y15, developed from RAPD marker OPY15 580 , and to $\operatorname{Xpsr} 150-2 N^{\nu}\{0044\}$.
Yr18\{1362\}. 7D\{1362\}.7DS\{324\}. i: Thatcher near-isogenic lines with Lr34 including the 13 2-gene combinations reported in\{434,937\}. v: Jupateco 73R; Lerma Rojo 64\{1375\}; Nacazari 76\{1375\}; Tesia F 79\{1375\}; Tonichi S 81\{1375\}; Wheaton\{1375\}. v2: Penjamo 62 Yr6 (heterogeneous)\{1375\}; Wheats with Lr34 (See Lr34); Others\{1376\}. ma: Complete linkage with $\operatorname{Lr} 34\{937,1362\}$; $\operatorname{Ltn}\{1361\}$; and $B d v 1\{1363\}$.
Yr19\{183\}. [YrCom\{183\}]. 5B\{183\}. v2: Compair Yr8\{183\}.
Yr20\{183\}. [YrFie\{181\}]. 6D\{183\}. v2: Fielder Yr6\{183\}.
Yr21\{183\}. [YrLem\{181\}]. 1B\{183\}. v: Lemhi\{183\}.
Yr22\{183\}. [YrLe1\{183\}]. 4D\{183\}. v2: Lee Yr7 Yr23\{183\}.
Yr23\{183\}. [YrLe2\{183\}]. 6D\{183\}. v2: Lee Yr7 Yr22\{183\}.
Yr24\{952\}. 1BS \{952\}. v: Meering**/K733/T. tauschii AUS18911\{952\}. tv: K733\{952\}.
Yr25\{158\}. 1D\{158\}. v: Carina\{0010\}; Hugenout\{0010\}; TP1295\{158\}; TP981\{158\}; Tugela\{0314\}; Tugela-DN\{0010,0314\}. v2: Heines Peko Yr2 Yr26\{0010\}; Reichersberg 42 Yr7\{0010\}.
Yr25 was predicted to be present in Strubes Dickkopf, Heines VII Yr2, Heines Peko Yr2 Yr6, Reichersberg 42 Yr7 and Clement Yr9 \{158\}. This prediction was confirmed for Heines VII, Heines Peko and Reichersberg $42\{0010\}$ but the pathogen culture used in $\{0010\}$ was not virulent on Clement(Yr9) or on Strubes Dickkopf where another, or a different gene, must be present.
Yr26\{617\}. 1BS \{0285\}.The earlier location of 6AS (6AL.6VS) \{617\} is not corect.. v: Lines R43, R55, R64 and R77\{0285\}. tv: T. turgidum Gamma 80-1. tr: Yangmai-5\{617\}. ma: Yr26-1.9cM - Xgwm11-1B/Xgwm18-1B\{0285\}.
Yr27\{953\}. [YrSk\{928\}]. 2BS\{953\}. v: Ciano 79\{953\}; Selkirk\{953\}; Webster\{953\}. Many CIMMYT wheat lines \{953\}. Note: Yr27 is closely linked with Lr13 (repulsion).
Yr28\{1377\}. Yr22 was also reported for chromosome 4D, but in the absence of an appropriate single gene stock and the unavailability of avirulent cultures in most laboratories, tests of linkage with $\operatorname{Yr} 28$ are unlikely in the foreseeable future. 4DS\{1377\}. v: Synthetic = Altar 84/T. tauschii W-219. Synthetic/Opata 85 SSD population. Genotype lists: $\{1325,970\}$. dv: T. tauschii W-219\{1377\}. ma: Close association with Xmwg634-4DS\{1377\}.

Yr29\{0119\}. Adult plant resistance \{0119\}. 1BL 00119$\}$. v2: Pavon F76 Yr6 Yr7 Yr30\{0119\}; Yr29 is completely linked with Lr46. See Lr46\{0119\}.
Yr30\{0120\}. Adult plant resistance \{0120\}. 3BS\{0120\}. v: Opata 85\{0120\}; Parula\{0120\}. v2: Inia 66 YrA\{0120\}; Pavon F76 Yr6 Yr7 Yr29\{0120\}; Yr30 is closely linked with Sr2 and Lr27\{0120\}.
Yr31 00325$\}$. 2BS. v: Pastor\{0325\}. ma: Recombination values: Yr31 - Yr27 0.148; Yr31 Lr23 0.295; Yr27-Lr23 0.131\{0325\}.
Yr32. [$\operatorname{YrCv}\{939\}]$. 2BS $\{939\}$. i: Avocet $S^{*} 4 /$ Carstens V\{970\}; Cook* $6 /$ Carstens V $\{970\}$. v: Caribo\{1430\}; Cyrano\{1430\}; Okapi\{1430\}. v2: Felix Yr3\{1430\}; Zdar Yr3a Yr4a\{067\}.
Sources of additional genes for seedling (designated "12") and adult resistances ("13", "14", "15") are listed in $\{1430\}$.

88.2. Temporarily designated gene for resistance to stripe rust

YrA. Refers to a phenotype specificity that appears to be controlled by complementary genes $\{1563\}$. v: Avocet $^{*}\left\{{ }^{*}=\right.$ heterogeneous $\} ;$ Anza $=$ Karamu $=$ Mexicani $=T 4=$ WW15; Banks"; Condor ${ }^{*}$; Cocamba; Egret ${ }^{*}$; Inia 66; Lerma Rojo 64; Lerma Rojo 64A; Nainari 60; Nuri 70; Sanda 73; Sonalika; Zaminder 80. v2: Condor selection P44 Yr6*; Pari 73 Yr6; Saric 70 Yr6; Yecora 70 Yr6\{1563\}.
YrCle\{186\}. 4B\{186\}. v2: Clement Yr9\{186\}.
YrD\{185\}. 6A\{185\}. v: Druchamp\{185,185\}.
YrDa1\{186\}. 1A\{186\}. v2: Daws YrDa2\{186\}.
YrDa2\{186\}. 5D\{186\}. v2: Daws YrDa1\{186\}. YrDru\{184,185\}. 5B\{184\}.6B\{185\}. v: Druchamp\{184,185\}. YrDru2\{184\}.Druchamp \{184\}. 6A\{184\}.
YrH46. Hybrid 46 \{184\}. Not the same gene as YrDru2 \{184\}. 6A\{184\}.
YrH52\{0003\}. 1BS $\{0003\}$. tv: T. dicocoides H52\{0003\}. ma: distal ...Yr15-9.6 cM -YrH52-1.4cM - Nor-B1-0.8cM - Xgwm264a - 0.6cM - Xgwm18\{0003\}; Xgmw273a 2.7cM - YrH52-1.3cM - Xgwm413/Nor1...centromere\{0108\}.

YrHVII\{186\}. 4A\{186\}. v2: Heines VII Yr2\{186\}.
YrMin. Minister \{184\}. 4A\{184\}.
YrMor\{186\}. 4B\{186\}. v2: Moro Yr10\{186\}. ma: The development of an STS marker, derived from an AFLP fragment, that co-segregates with YrMor was reported in $\{0357\}$.
YrND. Nord Desprez \{184\}.
May be the same as YrMin $\{184\}$. 4A $\{184\}$.
YrS\{185\}. 3B\{185\}. v: Stephens\{185\}.
YrSte\{184\}. 2B\{184\}. v: Stephens\{184\}.
YrSte2.Stephens \{184\}. 3B\{184\}.
YrTye\{186\}. 6D\{186\}. v: Tyee\{186\}.
YrTr1 186$\}$. 6D\{186\}. v2: Tres $\operatorname{Yr} \operatorname{Tr} 2\{186\}$.
YrTr2\{186\}. 3A\{186\}. v2: Tres YrTr1\{186\}.
YrYam $\{184,185\}$. 4B\{185\}. v: Yamhill\{185\}.
YrV23. Vilmorin \{184\}.
Allelic but not the same as YrSte \{184\}. 2B \{184\}.
Yrns-B1\{0033\}. 3BS\{0033\}. v: Lgst.79-74\{0033\}. ma: Xgwm493 (distal)-21 cM - YrnsB1\{0033\}.
North American workers $\{181,186,184\}$ allocated a number of temporary designations to uncatalogued genes detected with North American P. striiformis accessions. Druchamp,

Yamhill and Stephens were reported to carry "Yr3a or Yr4a" because these genes could not be distinguished with the cultures that were used.

88.3. Stripe rust QTLs

QTL: In the ITMI mapping population, QTLs were found in 2BS, 7DS, and possibly 5A, 3D and 6D \{0287\}. The 2BS gene is likely to be Yr27. In Camp Remy/Michigan Amber, QTLs were found in 2AL and 2BL $\{0287\}$.

Two QTLs in Camp Remy/Michigan Amber were located on chromosome 2BL (QYR1, LOD score 12) and 2AL (QYR2, LOD 2.2) \{0304\}. Four QTLs were scored in the ITMI population. The most effective (QYR3, LOD 7.4) on chromosome 2BS was probably Yr27, the others were located in 7DS (QYR4, LOD 3.4). 5A (QYR5, LOD 2.8), 3D(QYR6, LOD 2.8) and 6DL(QYR7, LOD 2.4) \{0304\}.

89.Reaction to Puccinia triticina

Disease: Brown rust, leaf rust.

89.1. Genes for resistance

Lr1\{047\}. 1B\{1409\}.5D\{954\}.5DL\{945\}. i: Centenario/6*Thatcher\{317\}; Malakoff/6"Prelude\{317\}; Wichita"4/Malakoff\{613\}. v: Centenario\{317\}; Chicora 'S'\{143\}; Daws (heterogeneous) \{1019\}; Dirkwin\{1019\}; Glenlea\{1255,976\}; Halle 9H37 \{074\}; Hyslop $\{1019\}$; Luke \{heterogeneous $\}$ \{1019\}; Malakoff 047$\}$; McDermid\{1019\}; Mexico 120\{933\}; Newton\{143,1024,1023\}; Norco\{1019\}; Shabati Sonora\{842\}; Sonora 64\{842\}; Tarsa\{842\}; Uruguay\{954\}; Walliday \{1019\}. v2: Blueboy Lr10\{143\}; Blueboy II Lr10 Lr24\{143\}; Erythrospermum 142 and 953 Lr3\{074\}; Laura Lr10 Lr34\{712\}; Norka Lr20\{1552\}; Plainsman V Lr3\{1024\}; Suneca Lr13\{485\}. ma: Co-seg. with Xpsr567-5D and Xglk621-5D in a Frisal/Lr1 resistant line. pTAG621 was converted to a diagnostic STS \{354\}.
Lr2. 1B $\{1409\} .2 \mathrm{DS}\{843,942\}$.
Lr2a\{320\}. [Lr2\{047\}]. i: Prelude*6/Webster\{320\}; Red Bobs**/Webster\{320\}; Webster/6*Thatcher $\{306\}$; Wichita ${ }^{*} 4 /$ Webster\{613\}. v: Eureka CI 17738\{143\}; Festiguay $\{843\}$; Webster $\{047\}$. v2: Alex $\operatorname{Lr} 10\{976\}$; Guard $\operatorname{Lr10} 1976\}$; James Lr10\{976\}; Len Lr10\{976\}; Marshall Lr10\{976\}; Mediterranean W1728 Lr3\{1369\}; Shield Lr3 Lr10\{198\}; Waldron Lr10\{143\}.
$\operatorname{Lr} 2 \boldsymbol{b}\{320\} .\left[\operatorname{Lr} 2^{2}\{1409\}\right]$. i: Prelude ${ }^{*} 6 /$ Carina $\{320\}$; Red Bobs ${ }^{*} 6 /$ Carina $\{320\}$; Thatcher ${ }^{*} 6 /$ Carina $\{320\}$; Wichita $/ 4^{*}$ Carina $\{613\}$. v: Carina $\{613\}$.
Lr2c\{320\}. [Lr2 $\left.{ }^{3}\{1409\}\right]$. i: Prelude ${ }^{*} 5 /$ Brevit $\{320\}$; Prelude ${ }^{*} 6 /$ Loros $\{320\}$; Red Bobs**/Brevit\{320\}; Red Bobs* $6 /$ Loros $\{320\}$; Thatcher ${ }^{*} 4 /$ Brevit\{320\}; Thatcher* $6 /$ Loros $\{320\}$; Wichita $4 /$ Brevit $\{613\}$; Wichita ${ }^{*} 4 /$ Loros $\{613\}$. v: Brevit\{613\}; Loros\{317,1257\}.
$\operatorname{Lr} 3\{047\}$. Because $L r 3$ appears to be a complex locus $\{486\}$ Democrat and Democrat/6* Thatcher should be accepted as standards. There is evidence to suggest that the allele in Mentana, and therefore many derivatives, is $\operatorname{Lr} 3 b$ \{939\}. If this is correct, many genotypes listed under $L r 3 a$ are likely to be $L r 3 b$
Lr3a. [Lr3\{047\}]. 6B\{549\}.6BL\{939\}. i: Democrat/6*Thatcher\{318\}; Wichita*4/ Mediterranean\{613\}. v: Belocerkovskaja 289\{074\}; Bennett\{1024\}; Democrat\{047\}; Fertodi 293\{074\}; Gage\{1024\}; Hana\{068\}; Homestead\{1024\}; Ilyitchovka\{075\};

Juna\{075\}; Jubilejne\{068\}; Kawvale\{143\}; Lancota\{1024\}; Mara\{068\}; Mediterranean\{047\}; Mediterranean W3732\{1369\}; Mentana\{842\}; Mironovskaya 264 \& 808\{074\}; Odra\{075\}; Osetinskaya\{074\}; Ottawa\{143\}; Pawnee\{1408\};
Ponca\{143\}; Rannaja 12\{074\}; Shawnee\{143\}; Shirahada\{842\}; Skorospelka 3b\{074\}; Sledkovicova K1004\{074\}; Viginta\{068\}; Warrior\{143,1024\}; Yubileynaya\{075\}. v2: Amika Lr26\{076\}; Bezostaya 1 Lr34\{074\}; Bowie Lr14b\{319\}; Erythrospermum 142 \& $953 \operatorname{Lr1}\{074\}$; Istra Lr26\{076\}; Mediterranean W1728 Lr2a\{1369\}; Plainsman V Lr1\{1024\}; Shield Lr2a Lr10\{198\}; Solaris Lr26\{076\}; See also\{069\}. ma: Cosegregation with Xmwg798-6B\{9921\}.
$\operatorname{Lr} 3 \boldsymbol{b}\{486\} .[\operatorname{Lr} 3 b g\{486\}]$. i: Thatcher ${ }^{*} 6 /$ Bage; RL6094 $=$ Tc $^{*} 6 / \mathrm{T} 6\{307\} . \mathrm{v}:$ Bage\{486\}. v2: T6 Lr16\{307\}.
$\operatorname{Lr} 3 c\{486\}$. [Lr3ka\{486\}]. i: Tc ${ }^{*} 6 /$ Klein Aniversario. v: Klein Aniversario $\{486\}$.
Lr4, Lr5, Lr6, Lr7, Lr8\{365\}. v: Purdue Selection 3369-61-1-10 = Waban\{365\}; Not available as separate single-gene lines.
Lr9\{1408\}. Derived from Ae. umbellulata. 6B\{954,1296,1299\}.6BL = T6BS.6BL-6U\#1L \{389\}. i: T47 = Transfer $=$ CS $+\operatorname{Lr9\{ 1408\} ;~Thatcher}{ }^{*} 6 /$ Transfer; Wichita* $4 /$ Transfer\{613\}. v: Abe\{143\}; Arthur 71\{1320,1024\}; Clemson 201\{465\}; McNair 701 \& 2203\{143\}; PI 468940\{1439\}; Riley $67\{1320,1024\}$; Sullivan\{1110\}. v2: Oasis Lr11\{1109\}. ma: Coseg with XksuD27-6B\{048\}; co-seg with Xmwg684-6B and STS Xsfr1\{1272\}; Lr9-8 cM -Xpsr546-6B\{1272\}; The structures of additional translocations are given in $\{389\}$.
$\boldsymbol{L r 1 0}\{199\} .{ }^{*}[\operatorname{LrL}\{031\}] .1 \mathrm{~A}\{312,546\} .1 \mathrm{AS}\{939\}$. i: Exchange/6*Thatcher\{306\};
Gabo $/ 6^{*}$ Thatcher $\{306\}$; Lee/6* ${ }^{*}$ Thatcher $\{306\}$; Selkirk $/ 6^{*}$ Thatcher $\{306\}$;
Timstein/6*Thatcher\{306\}. s: CS* $5 /$ Timstein 1A $\{939\}$; CS $/ 7^{*}$ Kenya Farmer 1A $\{939\}$. v: Centurk \{1024\}; Centurk 78\{1024\}; Concho\{143\}; Federation\{939\}; Mayo 52\{031\}; Mayo 54\{031\}; Parker\{546,1024\}; Rocky\{1024\}; Scout 66\{02101\}; Sinton\{1256\}; Tascosa\{143\}; TAM-105\{055\}; Unknown accessions\{208\}; See also\{0337\}. v2: Blueboy Lr1\{143\}; Blueboy II Lr1 Lr24\{143\}; Laura Lr1 Lr34\{712\}; Alex Lr2a\{976\}; Guard Lr2a\{976\}; James Lr2a\{976\}; Kenya Farmer Lr23\{939\}; Len Lr2a\{976\}; Marshall Lr2a\{976\}; Waldron Lr2a\{143\}; Shield Lr2a Lr3\{198\}; Exchange Lr12 Lr16\{031\}; Era Lr13\{143\}; Selkirk Lr14a Lr16\{031,199\}; Warden Lr16\{031\}; Gabo Lr23\{031\}; Lee Lr23\{031\}; Timstein Lr23\{031\}; Parker 76 Lr24\{143\}. ma: Xcdo426-1A-5.1cM - Lr10\{1058\}; Lr10-8cM -Glu-A3\{355\}; cosegregation with Xsfr1(Lrk10-1A) and Xsfrp1(Lrk10-1A)\{1270\}; complete linkage with Xsfr1(Lrk10-1A), which encodes a protein kinase\{639\}.
Lrk10. A receptor-like kinase. The locus $X s f r 1$ (Lrk10)-1A, detected by the probe Lrk10, is completely linked with Lr10 in chromosome 1AS \{356\}. The gene encodes a receptor-like kinase with extracellular and kinase domains \{0297\}. Using probe pLrk10-A, developed from the extracellular domain, 6 homologues were found in chromosomes 1A (1), 1B (3) and 1D (2) as well as group 1 chromosomes of T. monococcum, Ae. tauschii and barley $\{0296,0294\}$. Probes based on the kinase domain identified further homologues in chromosomes 3AS and 3BS as well as the corresponding regions in rice and maize $\{0294\}$. Both orthologous and paralogous evolution were suggested.
Lr11\{1409\}. 2A\{1409\}. i: Thatcher* $6 /$ Hussar\{306\}; Wichita**/Hussar\{613\}. v: Bulgaria 88\{142\}; Hart\{1024\}; Hazen\{049\}; Hussar\{1409\}. v2: Karl 92 Lr3 Lr10\{02101\}; Oasis Lr9\{143\}.
Lr12\{326\}. Adult plant reaction. 4B\{312\}. i: Exchange/6*Thatcher\{306\}. v: Opal\{306\}. v2: Sturdy Lr13\{301\}; Chinese Spring Lr34\{301\}; Exchange Lr10 Lr16\{326\}; AC Domain Lr10 Lr34\{0228\}; Unknown accessions\{208\}.
$\boldsymbol{L r 1 3}\{326\}$. Although originally described as a gene for adult plant reaction $\{032,326\}, \operatorname{Lr} 13$ can be detected at the seedling stage especially at high temperatures \{939,1156\}. 2BS\{939\}. i: $\mathrm{Tc}^{*} 7 /$ Frontana $=$ RL4031\{306\}; fifteen Thatcher lines with 2-gene combinations $\{711\} . \mathbf{v}$: This gene is very widespread\{939\}; Hereward\{0288\}; Hustler\{608\}; Kinsman\{608\}; Kenya

Plume\{1370\}; Manitou\{326\}; Mardler\{608\}; Maris Huntsman\{608\}; Moulin\{0288\}; Napayo\{070\}; Neepawa\{143\}; Norman\{608\}; Pastiche\{0288\}; Polk\{143\}; Virtue\{608\}. v2: BH1146 Lr34\{0268\}; Biggar Lr14a\{712\}; Chris Lr34; Columbus Lr16\{1258\}; Cumpas 88 Lr26\{1373\}; Era Lr10\{143\}; Frontana Lr34\{032,326,1374\}; Genesis Lr14a\{712\}; Hartog Lr1\{127\}; Hobbit Lr17a\{608\}; Hobbit Sib Lr17a\{1350\}; Inia 66 Lr14a Lr17\{1373\}; Klein Aniversario Lr3ka\{032\}; Kenyon Lr16\{300\}; Lerma Rojo 64 Lr17\{1373\}; Oasis 86 Lr19\{1373\}; Parula Lr34\{1374\}; Suneca Lr1\{485\}; Yecora Lr1\{1374\}. ma: Xpsr912-2B 9.1cM - Lr13-7.9cM - Xbcd1709-2B - 9.8cM - Cent.\{0088\}.

Lr14.

Lr14a\{319,964\}. 7B\{964\}.7BL\{770\}. i: Selkirk/6*Thatcher\{319\}. s: CS* ${ }^{*}$ /Hope 7B\{964\}. v: Aotea\{964\}; Brigand\{608\}; Gala\{964\}; Glenwari \{964\}; Hofed\{964\}; Hope\{964\}; H-44\{964\}; Lawrence\{964\}; Redman\{964\}; Regent\{964\}; Renown\{964\}; Spica\{964\}. v2: Biggar Lr13\{712\}; Genesis Lr13\{712\}; Inia 66 Lr13 Lr17\{939\}; Selkirk Lr10 Lr16\{319\}.
Lr14b\{319\}. i: Maria Escobar/6*Thatcher\{319\}. v2: Bowie Lr3\{9226\}; Maria Escobar Lr17\{319\}; Rafaela Lr17\{314\}.
Lr14ab. i: Lr14a/6*Thatcher//Lr14b/6*Thatcher Seln\{319\}.
$\boldsymbol{L r} 15\{843\} .2 \mathrm{DS}\{843,942\}$. i: Thatcher* $6 /$ Kenya W1483\{306\}. v: Kenya W1483\{843\}.
$\operatorname{Lr} \mathbf{1 6}\{318\}$. The following chromosome locations are consistant with the finding that the first location was based on the use of a Rescue monosomic series. Rescue differs from CS by a 2B-4B translocation \{939\}.
$\operatorname{Lr} 16$ is always asociated with Sr23. [LrE\{031\}]. 4B\{312\}.2BS\{939\}. i:
Exchange/6*Thatcher\{306\}; RL6096 = Tc ${ }^{*} 6 / \mathrm{T} 6\{307\}$. v: Arapahoe $\{02101\}$;
Brule\{02101\}; Ciano 79\{1373\}; Etoile de Choiosy \{074\}; Imuris 79\{1373\};
Millenium\{02101\}; Papago 86\{1373\}; Redland\{02101\}; Vista\{02101\}. v2: Columbus (heterogeneous) Lr13\{1258\}; Exchange Lr10 Lr12\{031\}; Kenyon Lr13\{300\}; Selkirk Lr10 Lr14a\{031\}; T6 Lr3bg\{307\}; Warden Lr10\{031\}.
Lr17\{318\}.
Lr17a\{318\},\{1350\}. [Lr17]. 2A\{314\}.2AS\{062\}. i: Klein Lucero/6*Prelude\{318\}; Klein Lucero/6*Thatcher\{318\}; Maria Escobar/4 ${ }^{*}$ Thatcher\{318\}. v: EAP $26127\{314\}$; Jagger 0338 \}; Jupateco 939$\}$; Klein Lucero 318$\}$. v2: Inia $66 \operatorname{Lr13} \operatorname{Lr14a\{ 9010\} ;~}$ Lerma Rojo 64 Lr13\{1373\}; Maria Escobar Lr14b\{318\}; Rafaela Lr14b\{314\}.
Lr17b $\{1350\}$. [LrH\{970\},WBR2\{615\}]. 2A\{1350\}. v: Brock\{0260\}; Harrier\{1350\}; Maris Fundin\{1350\}; Norin 10-Brevor, 14\{1350\}; Norman\{1350\}; Tarso\{0229\}. v2: Hobbit Sib = Dwarf A Lr13\{1350\}.
$\boldsymbol{L r 1 8}\{318\}$. Independently derived lines with $\operatorname{Lr18}$ possess a unique N band terminally located in chromosome 5BL \{1614\}. Low seedling responses conferred by Lr18 are most effective at 15-18C. With increasing temperatures the response becomes less effective and ineffective at 25-27C \{935, see also, 1614\}. 5BL \{935\} = T5BS.5BL-5G\#1L \{389\}. i: Africa
$43 / 7^{*}$ Thatcher $\{318\}$; Red Egyptian PI $170925 / 6^{*}$ Thatcher\{318\}. v: Africa $43\{318\}$; Red Egyptian PI 170925\{318\}; Red Egyptian PI 17016-2c \{318\}; Sabikei $12\{935\} ;$
Timvera\{935\}; Timvera Derivative\{935\}; Certain WYR accessions\{935\}; FTF \{1614\};
Several Sabikei lines including Sabikei $12\{1614\}$.
Lr19\{140\}. Derived from Thin. elongatum.
7DL = T7DS.7DL-7Ae\#1L\{291,956,1323,388,657,389\}.i:Agatha $=$ T4 = TC +
Lr19\{956,1323\}. v: L503\{1346\}; L513\{1346\}; Mutant 28\{598\}; Sunnan\{684\}; See Sr25.
v2: Oasis 86 Lr13\{1373\}.
7DL $=$ T7DS.7DL-7Ae\#1-7DL \{388\}.v:Mutant 235\{681\}.
7AL $=$ T7A-7Ae\#1\{330\}.v:Sears' 7A-7Ag No. 12\{330\}.
7BL \{1163\}.v:88M22-149\{1163\}; 4 further derivatives of 88M22-149\{0232\}.
7AgL $\{1304\}=7$ Ae\#1L.su:Agrus. ma: Co-seg with 8 RFLP markers $\{048\}$; Ep-D1c - 0.33
cM - Lr19\{1587\}; cosegregation with Ep-D1d\{974\}; Prins et al\{1162\}; studied 29 deletion mutants in Indis and determined the gene order: Sd-1 - Xpsr105-7D- Xpsr129-7D- Lr19-Wsp- D1- Sr25-Y; The following gene order for the Thinopyrum segment is given in\{0101\}; Cent - Sd1 - Xpsr165-7D - Xpsr105-7D -Xpsr129-7D - XcslH81-1-Xwg380-7D -Xmwg2062-7D-Lr19 - Wsp-D1-Sr25/Y; An STS marker closely linked and distal to Lr19 was developed from an AFLP\{0273\}.
Lr19 is usually associated with Sr25. Sears' transfer 7D-7Ag No. 11 carries neither Lr19 nor Sr25. SeeLr29.
Knott \{681\} obtained two mutants (28 and 235) of Agatha possessing Lr19, but with reduced levels of yellow pigment in the flour. Marais $\{890,892\}$ obtained mutants and recombined lines with intermediate levels of, or no, yellow pigment. It was shown that in recombinant line 88M22-149 lacked yellow pigment, $\{1163\}$.
The chromosome with Lr19 in Indis is probably identical to that in Agatha $\{1162\}$.
Lr20\{140\}. 7AL\{1305,1554\}. s: CS ${ }^{*} 5 /$ Axminster 7A\{1293\}. v:
Axminster\{348,1175,1305\}; Birdproof \{1554\}; Bonus\{1554\}; Converse\{1554\};
Festival\{1554\}; Kenora\{1554\}; Kenya W744\{1554\}; Maris Halberd\{608\};
Normandie\{348,1554\}; Sappo\{608\}; Sicco\{310\}; Thew\{140,1552\}; Timmo\{608\}. v2:
Norka Lr1\{1554\}; See Pm1 (Reaction to Blumeria graminis) \& Sr15 (Reaction to Puccinia graminis) with which Lr20 is always associated. Lr20 in Sicco appears to differ from that in Sappo, Timmo and Maris Halberd\{310\}; Lr20 in Norka (Lr1+Lr20) may differ from that in Thew\{939\}. ma: Complete cosegregation of several markers including Xcdo347-7A, Xpsr121-7A, Xpsr680-7A, Xpsr687-7A, Xbzh232(Tha)-7A, Xrgc607-7A and Xsts638-7A with Pm1 and Lr20 was reported in $\{0323\}$.
Lr21\{1241\}. 1D\{650\}.1DL $\{1241\} .1 \mathrm{DS}\{448\}$. i: Thatcher ${ }^{*}$ /Tetra Canthatch/Ae. squarrosa var. meyeri RL 5289\{306\}. v: Tetra Canthatch/Ae. squarrosa var. meyeri RL 5289, RL 5406\{648\}; McKenzie\{0228\}; WGRC2=TA1649/3* Wichita\{0299\};
WGRC7=Wichita/TA1649//2*Wichita\{0299\}. v2: AC Cora Lr13\{713\}. dv: Ae. squarrosa accessions:RL5289=TA1599\{1241\}; TA1649\{0299\}; TA1691\{0299\};
TA2378\{0299\}; TA2470\{0299\}; TA2483\{0299\}; TA2495\{0299\}; TA2527\{0299\};
TA2528\{0299\}. ma: All members of the Lr21 family carry a STS derivative of XksuD14$1 D$ that has a resistance gene analogue structure\{0299\}; XksuD14-1D was reported to map 1.8cM proximal to Lr21 in $\{0375\}$; Lr21-0cM - rgaYr10b-0.6cM - Xgdm33-1D $\{0360\}$.

Lr22. 2DS $\{1241\}$.
Lr22a\{1241\}.Adult plant reaction. i: Thatcher*3//Tetra Canthatch/Ae. squarrosa var. strangulata RL $5271\{306\}$. v: Tetra Canthatch/Ae. squarrosa var. strangulata RL 5271, RL 5404\{311\}. v2: AC Minto Lr11 Lr13\{713\}. dv: Ae. squarrosa var. strangulata RL 5271.
Lr22b\{298\}.Adult plant reaction. v: Canthatch\{298\}; Marquis \{970\}; Thatcher\{298\}; This gene will be present in near-isogenic lines based on Thatcher.
Lr23\{948\}. [LrG\{951\}]. 2BS\{948\}. i: Lee FL 310/6*Thatcher\{948\}. s: CS*7/Kenya
Farmer 2B $\{948\}$; CS* ${ }^{*}$ /Timstein 2B $\{948\}$. v: Cranbrook $\{02119\}$; Crim\{1091\};
Hope/Timstein\{1091\}; I 310678\{1091\}; I 310685\{1091\}; I 349162\{1091\}; K 45973\{1091\};
K 51070\{1091\}; Rocta\{1091\}. v2: Gamenya $\operatorname{Lr} 3\{1552\} ;$ Gabo $\operatorname{Lr10\{ 1552\} ;~Kenya~}$
Farmer Lr10\{1552\}; Lee Lr10\{1552\}; Timstein Lr10\{1552\}. tv: Altar $84\{1058\}$. ma: associated with Xksu904(Per2)-2B\{0090\}.
A QTL, which is likely to correspond to Lr23, was identified in the Opata 85/W-7984 (ITMI) RI mapping population. The resistance was contributed by W-7974 \{0090\}.
Lr24. Derived from Thin. elongatum.
Always present with Sr24 \{956\}. See Sr24(Reaction to Puccinia graminis). [LrAg\{141\}]. 3DL $\{956,1389\} . \quad$ v: Cody\{1284\}; Osage\{143\}; Payne\{1390,1024\}; SST 23\{1324\}; SST $44=$ T4R $\{1324\} ; \operatorname{Timpaw}\{1255\} ;$ Torres\{128\}; Wanken\{1255\}; Australian
genotypes\{0340\}. v2: Blueboy II Lr1 Lr10\{141\}; Fox Lr10\{141\}; Parker 76 Lr10\{143,1024\}; Siouxland Lr26\{1283\}. ma: Co-seg of Lr24 in Agent with 8 RFLP markers; segment in Sears' 3D-3Ag\#1 is shorter than in Agent\{048\}; Tagged with Xpsr1203$6 B\{1271\}$; cosegregation with RAPD marker that was converted to a SCAR $\{231\}$. 1BL \{185\} = T1BL.1BS-3Ae\#1L $\{600\} . v:$ Amigo $\{1463,600,185\}$; Teewon\{600\}.
Lr25. Derived from S. cereale cv. Rosen. 4BS\{270,271,380,389\}. v: Transec\{273\}; Transfed\{269\}; Always present with Pm7. ma: Cosegregation with a RAPD\{1165\}. Revised to T4BS.4BL-5RL $\{543\}$ and later to T4BS.4BL-2R\#1L.
Lr26. 1R (1B).T1BL.1RS. i: MA1 and MA2 four breakpoint double translocation lines 1RS-1BS-1RS-1BS.1BL in Pavon\{0084\}. v: Derivatives of Petkus rye - see Yr9 (Reaction to Puccinia striifromis) \& Sr31 (Reacton to Puccinia graminis); Bacanora 88\{1373\}; GR876\{753\}; Iris\{075\}; Sabina\{075\}. v2: Cumpas 88 Lr13\{1373\}; Istra Lr3\{076\}; Siouxland Lr24\{1283\}; Solaris Lr3\{076\}; Many wheats with Lr26 also carry Lr3. Amika \{heterogeneous\} Lr3\{076\}; See also\{310\}. tv: Cando ${ }^{*} 2 /$ Veery, KS91WGRC14\{381\}. ma: Several markers tightly linked with Lr26 were identified in \{0377\}. v: Cougar\{0267\}; Rawhide (heterogeneous) $\{0267\}$.
1BS/1RS recombinants 4.4cM proximal to Gli-B1/Glu-B3 \{0084\}. Hanusova et al. \{492\} identified 127 wheats with Lr26 but only 16 of them were listed.
$\operatorname{Lr} 27\{1367\}$. One of two complementary genes; the second gene, $\operatorname{Lr} 31$, is located in chromosome 4BS \{1367\}. The following wheats have both Lr27 and Lr31.
Lr27 is present in wheats with Sr2, but is not expressed in the absence of the complementary factor $\{1366\} . \quad[\operatorname{LrGt}\{1366\}, A\{1058,1366\}]$. 3BS $\{1367\}$. s: CS* ${ }^{*} 6 /$ Ciano 3B $\{1366\}$; CS* ${ }^{*}$ /Ciano 5B $\{1366\}$; CS* $6 /$ Hope 3B $\{1366\}$. v: Gatcher $\{1366\}$; Ocoroni $86\{1373\}$. v2: Anhuac Lr13 Lr17\{1361\}; Cocoraque 75 Lr13 Lr17 Lr34\{1361\}; Jupateco 73S Lr17\{1361\}; SUN 27A Lr1 Lr2a\{1366\}; Timgalen Lr3 \{heterogeneous\} Lr10\{1366\}. ma: Positive association with XksuG53-3B\{1058\}.
Lr28\{967\}. Derived from Ae. speltoides. 4AL $\{967\}=$ T4AS.4AL-7S\#2S \{389\}. i: CS 2A/2M 4/2\{967\}; CS 2D/2M 3/8\{967\}. ma: Lr28 was tagged using STS primer OPJ-01378 $\{1052\}$.
Lr29\{939\}. Derived from Thin. elongatum. 7DS \{939\} = T7DL-7Ae\#1S\{389\}. i: Sears' CS 7D/Ag\#11\{939,1300\}; RL6080 $=$ Tc ${ }^{*} 6 /$ Sears' 7D/Ag\#11\{316\}. ma: Co-segregation with two RAPDs\{1165\}.
$\boldsymbol{L r} 30\{315\}$. Recessive $\{315\} . \quad[\operatorname{LrT}] .4 \mathrm{AL}\{315\} . \quad$ i: RL $6049=$ Thatcher ${ }^{*} 6 /$ Terenzio $\{315\}$. v: Terenzio\{315\}.
$\boldsymbol{L r} 31\{1367\}$. One of two complementary genes, the second gene is $\operatorname{Lr27.}$ [$B\{1058,1366\}]$. 4BL $\{1367\}$. v2: Chinese Spring Lr12 Lr34\{1367\}. v: Ocoroni $86\{1373\}$. v2: See Lr27 for list of wheats with $\operatorname{Lr} 27+L r 31$. ma: A positive association with XksuG10-4B\{1058\}.
Lr32. 3D $\{644\} .3 \mathrm{DS}\{645\}$. v: Tetra Canthatch/T. tauschii RL 5497-1, RL 5713, RL 5713/Marquis-K\{644\}. dv: T. tauschii RL5497-1\{644\}. ma: Xbcd1278-3D-3.6 cM Lr32\{048\}; Xcdo395-3D-6.9 cM - Lr32\{048\}.
Lr33\{325\}. 1BL\{325\}. i: RL $6057=$ Tc ${ }^{*} 6 /$ PI 58548\{297,325,321\}. v: PI 268454a\{297\}; PI 58548\{297,325\}. v2: PI 268316 Lr2c Lr34\{297\}; Others\{1322\}.
$\boldsymbol{L r} 34\{297,299\}$. In addition to conferring seedling and adult plant resistance, $L r 34$ responds in a complementary manner when combined with either $\operatorname{Lr} 33$ or $\operatorname{LrT3}\{321\}$. In the Thatcher background, $\operatorname{Lr} 34$ is associated with increased resistance to stem rust $\{299,321\}$. Although the resistance gene in the near-isogenic Thatcher line, RL6077, was considered to be Lr34 on the basis of disease response, leaf tip necrosis and its association with resistance to stripe rust, a cross with RL6058 segregated for two genes. A translocation to another chromosome was suggested \{324\}. [LrT2\{321\}]. 7D\{299\}.7DS\{324,1058\}. i: Line $897\{321\}$; Line $920\{321\} . \quad$ v: RL $6058=$ Tc $^{*} 6 /$ PI 58548\{297\}; PI 268454\{297\}; Westphal $12\{0268\}$; Others $\{299,321,1322,1376\}$; See\{1362\}. v2: BH1146 Lr13; Chinese Spring Lr12 Lr31\{301\}; Frontana Lr13\{1374\}; Glenlea Lr1\{327\}; Lageadinho LrT3\{321\}; Laura

118

Lr1 Lr10\{712\}; Parula Lr13\{1374\}; PI 58548 Lr33\{297,321\}; RL $6059=$ Tc $^{*} 6 /$ Terenzio $\operatorname{Lr} 33\{297\}$; RL $6069=$ Tc ${ }^{*} 6 /$ Lageadinho $\operatorname{LrT3}\{321\} ;$ RL $6070=$ Tc ${ }^{*} 5 /$ PI $321999 \operatorname{LrT3}\{321\}$; RL 6050 = Tc ${ }^{*} 6 /$ Terenzio LrT3\{321\}; Selections Jupateco 73R Lr17a Lr27 + Lr31 and Jupateco 73S Lr17a Lr27 + Lr31 and Cocoraque 75 Lr13 Lr17a Lr27 + Lr31 and Anhuac 75 Lr13 Lr17a Lr27 + Lr31, can be considered near-isogenic for the presence and absence respectively, of Lr34\{1361\}; Sturdy Lr12 Lr13\{301\}; Terenzio Lr3 Lr30 LrT3\{321\}; Thirteen Thatcher lines with 2-gene combinations\{434\}. ma: Complete linkage with Ltn (leaf tip necrosis) $\{1361\}$, Yr18 (Reaction to Puccinia striiformis) $\{1362,937\}$ and Bdv1 (Reaction to barley yellow dwarf virus) $\{0090\}$; association with $X w g 834-7 D\{0268\}$. A QTL, which is likely to correspond to $\operatorname{Lr} 34$, was identified in the Opata $85 / \mathrm{W}-7984$ (ITMI) RI mapping population. The resistance was contributed by Opata 85 \{0090\}.
Lr35\{651\}. Derived from Ae. speltoides\{651\}. Adult plant resistance $\{651\}$. 2B\{651\}. v: RL $5711\{651\}$. ma: A. SCAR marker was developed\{9923\}.
Complete cosegregation between Lr35 and RFLP loci $\mathrm{X} w \mathrm{~g} 996-2 B, X p s r 540-2 B$ and Xbcd260-2B was observed. The RFLP probe BCD260 was converted to a CAPS and STS marker $\{0045\}$.
Lr36. Derived from Ae. speltoides. 6BS\{292\}. v: Line 2-9-2; Line E84018. al: Ae. speltoides Popn. 2.
$\operatorname{Lr} 37\{062\}$. Derived from Ae. ventricosa.
$\operatorname{Lr} 37$ can be recognised in seedlings at low temperatures $\left(17^{\circ} \mathrm{C}\right)$ and is effective in adult plants under field conditions. See also Sr38 (Reaction to Puccinia graminis) and Yr17 (Reacton to Puccinia striiformis) 2AS \{062\}.6M $=2 \mathrm{MS}-6 \mathrm{MS} .6 \mathrm{ML}$ or 2MS6ML.6MS\{0009\}.
VPM1 and derivatives: 2AS $\{062\}=2 A L .2 A S-2 N^{v}$ S $\{0213\} . \mathbf{i}:$ RL $6081=\mathrm{Tc}^{*} / \mathrm{VPM} 1\{939\}$; RL6081 $=\mathrm{Tc}^{*} 8 / \mathrm{VPM} 1\{316\}$; various NILs listed in $\{0213\}$. v: Hyak\{021\}; Madsen\{020\}; Rendezvous\{062\}; VPM1\{062\}; VPM1 derivatives\{939\}; see also Reaction to P. striiformis tritici Yr17.
Moisson derivatives: $\operatorname{Lr}\{113\}$. 2AS $=2 A L .2 A S-2 N^{v} S\{113\} . a d: M o i s s o n+6 N^{\mathrm{V}}=6 \mathrm{~N}^{\mathrm{V}}$ S. $6 \mathrm{~N}^{\mathrm{V}} \mathrm{L}-$ $2 N^{\mathrm{V}}$ S or $6 \mathrm{~N}^{\mathrm{V}} \mathrm{L} .6 \mathrm{~N}^{\mathrm{V}} \mathrm{S}-2 \mathrm{~N}^{\mathrm{V}}$ S 00009$\}$. v: Mx12 \{0213\}; Mx22\{0213\}. ma: (relevant to both groups of derivatives.) PCR primers designed from marker csVrga1D3 $\{0183\}$ producing a 383bp product allows detection of the $2 \mathrm{~N}^{\mathrm{v}}$ S segment $\{0213\}$; see also: Reaction to P. striiformis tritici Yr17.
A resistance gene analog containing an NBS-LRR R gene sequence was isolated from the $A e$. ventricosa segment carrying Lr37 \{0183\}.
Lr38\{392\}. Derived from Thin. intermedium.
1DL $=$ T1DS.1DL-7Ai\#2L\{390,389\}.v:T25\{390\}.
$2 A L=2 A S .2 A L-7 A i \# 2 L\{392,389\} . \mathbf{v}: W 49\{392\}=$ T33\{390 $\}$.
3DS $=3 D L .3 D S-7 A i \# 2 L\{390,389\} . v: T 4\{390\}$.
5AS $=$ 5AL.5AS-7Ai\#2L\{390,389\}.v:T24\{390\}.
6DL $=$ 6DS.6DL-7Ai\#2L $\{390,389\} . \mathbf{i}: R L 6097=$ Thatcher ${ }^{*} 6 / \mathrm{T} 7\{307\} . \mathbf{v}: \mathrm{T} 7\{390,307\}$; 7Ai\#2(7D)\{392,389\}; 7Ai\#2(7A)\{390\}. su: W52\{390,389\}.
Lr39\{1200,02100\}. Derived from Aegilops tauschii $\{02100\}$. 2DS\{02100\}. v: TA4186 = TA1675*2/Wichita\{02100\}. dv: Aegilops tauschii TA $1675\{02100\}$. ma: 10.7 cM distal to Xgwm210-2D 002100$\}$.
Lr40\{1200\}. Proposal under discussion.
Lr41\{215\}. 1D\{215\}. v: KS90WGRC10 $=$ TAM107 ${ }^{*} 3 /$ T. tauschii TA2460\{220\}; Thunderbolt $\{02100\}$. dv: TA $2460\{220\}$.
Lr42\{218\}. 1D\{218\}. v: KS91WGRC11 = Century ${ }^{*} 3 /$ T. tauschii TA2450. dv: T. tauschii TA2450.
Lr43\{218\}. 7D\{576\}.7DS\{577\}. v: KS92WGRC16 = Triumph 64/3/KS801071/TA2470//TAM200. dv: T. tauschii TA2470.

Lr44\{322\}. 1B\{322\}. i: RL $=6147$ Thatcher* ${ }^{*} 6 / T$. spelta $7831\{322\}$. v: T. spelta 7831\{322\}; T. spelta 7839\{322\}.
Lr45\{958\}. Derived from Secale cereale. 2A = T2AS-2R\#3S.2R\#3L \{958,389\}. i: RL6144 = Thatcher ${ }^{*} 7 /$ ST-1 $\{958\}$. v: ST-1 $\{958\}$; Various Australian backcross derivatives $\{958\}$.
Lr46\{1364\}. Completely linked with Yr29 \{0119\}. Adult plant resistance.
1B\{1346\}.1BL\{0119\}. s: Lalbahadur(Pavon 1B) Lr1\{1364\}. v2: Pavon F76 Lr1 Lr10 $\operatorname{Lr} 13\{1364,0119\}$. ma: An RFLP marker associated with $L r 46$ with a recombination value of about 10% was identified in $\{0119\}$.
Lr47\{9901\}. Derived from Ae. speltoides \{9901\}.
 7A=T7AS-7S\#1S.7S\#1L \{389\}.v:CI 17882, CI 17884, CI 17885, KS, 90H450\{9901\}. 7AL=Ti7AS.7AL-7S\#1L-7AL.v:Pavon derivative PI 603919\{9901\}. ma: Lr47 was located in the distal one-third of 7AS, $2-10 \mathrm{cM}$ from the centromere and within a $20-30 \mathrm{cM}$ segment $\{9901\}$; Complete linkage with several RFLP markers $\{9901\}$; and PCR specific markers $\{0126\}$.
Lr48\{0085\}. Adult plant resistance $\{0085\}$. Recessive $\{0085\}$. 4BL $\{0329\}$. v2: CSP44 Lr34\{0085\}; Dove Lr34\{0329\}.
Lr49\{0085\}. Adult plant resistance $\{0085\}$. 2AS 00329$\}$. v2: Tonichi $\operatorname{Lr} 34\{0329\}$; VL404 Lr34\{0085\}.
Lr50\{0221\}. Based on linkage with SSR markers. 2BL $\{0221\}$. v: WGR36 $=$ TAM107*3/TA870//Wichita\{0221\}. tv: T. armeniacum TA870\{0221\}.
Lr51\{0308\}. 1BL $\{0308\}$. i: Express ${ }^{*} 7 / T 1\{0308\} ; \operatorname{Koln}^{*} 7 / T 1\{0308\} ;$ UC1037 ${ }^{*} 7 / \mathrm{T} 2\{0308\}$. v: Neepawa ${ }^{*} 6 /$ Ae. speltoides F-7, selections 3 and $12\{0306\}$; Interstitial translocations T1AS.1AL-1S\#F7-12L-1AL $\{0308\}=$ T1; T1BS.1BL-1S\#F7L-1BL\{0306\}. al: Ae. speltoides F-7 selections 3 and 12\{0306\}. ma: Linked with RFLP markers Xmwg710-1B and Xaga7-1B\{0308\}.
$\boldsymbol{L r T b}\{820\}$. Adult plant resistance $\{820\}$. v2: AC Taber $\operatorname{Lr} 13 \operatorname{Lr} 14 a\{820\}$.
LrTm\{0277\}. dv: T. monococcum. ma: Linked to microsatellite locus Xgwm136\{0277\}.
$\boldsymbol{L r} \boldsymbol{T r}\{0227\}$. v: Aegilops triuncialis derivatives\{0227\}. ad: WL711 BC2F5 addition lines $\{0227$ \}. al: Aegilops triuncalis Acc. $3549\{0227$ \}. ma: Lines with LtTr possessed a homologue of Xgwm368-4B\{0227\}.
LrVPM\{1603\}. 7DL\{7411\}.
LrW\{309\}. v2: V618 Lr33\{309\}; V336 Lr33 LrB\{309\}.
$\operatorname{LrW2}\{305\}$. A gene, identified only as $L r$, was transferred to wheat chromosome 2AS from $6 \mathrm{M}^{\vee}$ \{113\}. Cosegregating markers were Xpsr933-2A and Xpsr150-2A.

A series of temporary designations for seedling and adult plant resistance genes in six durums is given in $\{1648\}$.

Complex genotypes:
AC Domain: Lr10 Lr16 Lr34 \{820\}.
Benito: Lr1 Lr2a Lr12 Lr13 \{1256\}.
Buck Manantial: Lr3 Lr13 Lr16 Lr17 Lr34? \{300\}.
Era: Lr10 Lr13 Lr34 \{342\}.
Grandin: Lr2a Lr3 Lr10 Lr13 Lr34 \{821\}.
Mango: Lr1 Lr13 Lr26 Lr34 \{1374\}.
MN7529: Lr1 Lr2a Lr10 Lr16 \{976\}.
Opata 85: Lr10 Lr27+Lr31 Lr34 \{1058\}.
Pasqua: Lr11 Lr13 Lr14b Lr30 Lr34 \{304\}.
Prospect: Lr1 Lr2a Lr10 Lr13 \{197\}.
Roblin: Lr1 Lr10 Lr13 Lr34 \{303,713\}.

Trap: Lr1 Lr3 Lr10 Lr13 Lr34 \{1374\}.

Genotype lists:Australian cultivars \{0288\}; Chinese cultivars \{0013\}; Combinations with Lr34\{1361\}; Cultivars from the former USSR \{1380\}; Czechoslovakian cultivars\{855,0102\}; European cultivars \{0229,0260,0288,0337\}; Indian cultivars \{1365,1345\}; Indian Subcontinent $\{1365\}$; Mexican cultivars\{1373\}; U.S.A. cultivars $\{1219,978,0334\}$, see also $\{970\}$.
89.2. Suppressor of genes for resistance to P. triticina

SuLr23\{1058\}. Suppressing allele. 2DS\{1058\}. v: Altar 84/T. tauschii 219\{1058\}.
suLr23\{1058\}. Non-suppressing allele v: Opata $85\{1058\}$.

89.3. QTLs for reaction to P. triticina

QTLs for leaf rust resistance were identified in $\{0050\}$ and were named by the catalogue curators.
QLr.sfr-1B\{0050\}. 1BS\{0050\}. v: Forno/T. spelta var. Oberkulmer mapping population; the resistance was contributed by Forno\{0050\}. ma: Associated with Xpsr949-1B and Xgwm18-1B\{0050\}.
QLr.sfr-2B\{0050\}. 2B $\{0050\}$. v: Forno/T. spelta var. Oberkulmer mapping population; the resistance was contributed by Oberkulmer\{0050\}. ma: Associated with Xpsr924-2B and Xglk699-2B\{0050\}.
QLr.sfr-3A\{0050\}. 3A\{0050\}. v: Forno/T. spelta var. Oberkulmer mapping population; the resistance was contributed by Forno\{0050\}. ma: Associated with Xpsr570-3A and Xpsr543-3A \{0050\}.
QLr.sfr-4B\{0050\}. 4B\{0050\}. v: Forno/T. spelta var. Oberkulmer mapping population; the resistance was contributed by Forno\{0050\}. ma: Associated with Xpsr921-4B and Xpsr593-4B\{0050\}.
QLr.sfr-4D\{0050\}. 4DL\{0050\}. v: Forno/T. spelta var. Oberkulmer mapping population; the resistance was contributed by Forno\{0050\}. ma: Associated with Xglk302-4D and Xpsr1101-4D $\{0050\}$.
QLr.sfr-5D\{0050\}. 5DL\{0050\}. v: Forno/T. spelta var. Oberkulmer mapping population; the resistance was contributed by Oberkulmer \{0050\}. ma: Associated with Xpsr906-5D and Xpsr580-5D 00050$\}$.
QLr.sfr-7B.1 $\{0050\}$. 7B $\{0050\}$. v: Forno/T. spelta var. Oberkulmer mapping population; the resistance was contributed by Forno\{0050\}. ma: Associated with Xpsr593-7B and Xpsr129-7B\{0050\}.
QLr.sfr-7B.2\{0050\}. v: Forno/T. spelta var. Oberkulmer mapping population; the resistance was contributed by Forno\{0050\}. ma: Associated with Xglk750-7B and Xmwg710$7 B\{0050\}$.

90.Reaction to Pyrenophora tritici-repentis

Disease: Tan spot, yellow leaf spot.
Tan spot produces two types of genetically determined symptoms, viz. extensive chlorosis and tan necrosis. Pathotypes with the ability to inflict tan spot necrosis (TSN\} produce a host gene-specific toxin in culture.

121

 Pathogenic Disease/Pest Reaction
90.1. Insensitivity to tan spot toxin

tsn1 \{346\}. Insensitivity (disease resistance) is recessive \{346\}. 5BL\{346\}. v: BR34\{0007\}; CEP17\{0007\}; Chinese Spring\{0007\}; Erik\{0007\}; 1A807\{0007\}; 1A905\{0007\}; Synthetic W-7976 = Cando/R143/Mexicali 'S'/3/Ae. squarrosa C122. tv: Altar 84\{0007\}; D87450\{0007\}. ma: Xbcd1030-5B-5.7cM - tsn1-16.5cM - Xwg583-5B\{346\}; tsn13.7cM - Xbcd1030-5B\{0007\}.

Tsn1. Sensitive. v: Cheyenne\{0007\}; Hope\{0007\}; Jagger\{0007\}; Kulm\{346\}; ND485\{0007\}; Timstein $\{0007\}$.

90.2. Resistance to chlorosis induction

Tsc1. ma: Gli-A1-5.7cM - Tsc1 (Ptr ToxC)\{0315\}.
QTsc.ndsu-1A\{9924\}. Resistance is dominant \{344\}. [Tsc1\{344\}]. 1AS\{344\}. v: Synthetic W7984\{344\}. ma: Association with Gli-A1\{344,0040,0264\}.
QTsc.ndsu-1A, or a closely associated gene, confers insensitivity to Ptr ToxC, see $\{0315\}$. Inoculation with purified toxin Ptr ToxC was used to map this locus.QTsc.ndsu-1A confers resistance in both seedlings and adult plants.
QTsc.ndsu-4A. 4AL $\{0090\}$. v: Opata 85/W-7984(ITMI) RI mapping population; resistance was contributed by W-7984\{0090\}; In W-7976/Trenton resistance was contributed by W7976\{0264\}. ma: Association with Xksu916(Oxo2) - 4A and Xksu915(14-3-3a)-4A\{0090\}; In W-7976/Trenton there was association with Xwg622-4A\{0264\}; Minor QTLs in chromosomes 1AL, 7DS, 5AL and 3BL were associated with resistance in adult plants $\{0264\}$.

91.Reaction to Sitodiplosis mosellana (Gehin)

Insect pest: Orange blossum wheat midge, Wheat midge. This pest should not be confused with Contarinia tritici, the yellow blossom wheat midge.
Sm1\{0218\}. 2B\{0218\}. v: Augusta\{0218\}; Blueboy\{0218\}; Caldwell\{0218\}; Clark\{0218\}; FL302\{0218\}; Howell\{0218\}; Knox $62\{0218\}$; Mono\{0218\}; Seneca\{0218\}. ma: Linked to a SCAR marker\{0223\}.

92.Reaction to Schizaphis graminum Rond. (Toxoptera graminum Rond.)

Insect pest: Greenbug
Gb1\{1514\}. Recessive. [gb1\{222\}]. v: CI 9058\{222\}; Dickinson Selection 28A\{222\}.
Gb2\{1313,1514\}. 1A\{554\}. = T1AL.1R\#2S\{389\}. v: Amigo CI 17609\{1313\};
Century $\{0008\}$; TAM107\{0008\}; TAM200\{0008\}; TAM202\{0008\}.
Gb3\{624,1514\}. Resistance in Largo and derivatives was controlled by multiallelic complementary genes \{783\}. Gb3 was postulated to be one of the loci concerned. 7D\{554\}. \mathbf{v} : Largo CI 17895\{622\}.
7DL 0319$\} . v: T A M 110\{0319\} ;$ TXGBE373\{0319\}. ma: Completely associated with 2AFLP markers \{0319\}. These were also present in germplasm line KS89WGRC4, implying the likely presence of $G b 3$ or a closely linked resistance gene\{0319\}.
$\boldsymbol{G b} 4\{523,1514\}$. v: CI $17959\{903\}$.
Gb5 $\{1514,1515\}$. 7S(7A) \{391\}. su: CI 17882; CI 17884; CI 17885\{1515\}.
Gb6. $1 \mathrm{~A}=\mathrm{T} 1 \mathrm{AL} .1 \mathrm{R} \# 2 \mathrm{~S}\{1151\}$. v: GRS1201\{1152\}; GRS1202\{1152\}; GRS1203\{1152\}; GRS1204\{1152\}; GRS1205\{1152\}; see also Pm17 (Reaction to Brumeria graminis). su: Tx4386\{1150\}. ad: Tx4333\{1150\}. al: Insave rye.

93.Reaction to Tapesia yallundae. (Anomorph: Pseudocerosporella herpotrichoides (Fron) Deighton)

Disease: eyespot, strawbreaker footrot.
Pch1. [Pch\{261\}]. 7D\{591,592\}.7DL\{708,1603\}. s: Courtot**Roazon 7D\{592\}; Hobbit Sib*/VPM1 7D\{591\}. v: Ae ventricosa derivative\{261\}; H-93-70\{236,1521\}; Hyak $\{021\}$; Madsen\{020\}; Rendezvous\{1603\}; Roazon\{591\}; 5L 219\{1521\}. 7A\{0224\}.tv:Five recombinant lines $\{0224\}$. al: Ae. ventricosa\{261\}. Pch1 is closely linked with Ep-V1 \{973\}. Delibes et al. \{236\} concluded that Pch1 was not located in chromosome 7D whereas Law et al. \{776\} found that H-93-70 possessed a unique allele, $E p-D 1 b$, in common with VPM1 and its derivatives. Eyespot resistance and $E p-A 1 b$ in chromosome 7A were genetically associated \{704\}.
Pch2\{228\}. 7A\{704\}.7AL\{228,229\}. s: CS*/Cappelle Desprez 7A\{704,228\}. v: Cappelle Desprez\{704,228\}. ma: Xcdo347-7A (distal) - 11cM - Pch2-18.8cM - Xwg380-7A (proximal)\{229\}.
According to $\{0380\}$, this gene is not effective at the adult plant stage. Instead, the adult resistance of Cappelle-Desprez was controlled by a gene on chromosome 5A with the possibility of two less effective genes on 1A and 2B.
Pch3\{616\}. ad: CS + 4V\{1050\}.
$\boldsymbol{P c h}_{\text {Dv }}\{618\}$. 4VL\{618\}. ad: Wheat $+4 \mathrm{~V}\{618\}$. su: Wheat 4VL(4D), Yangmai 5\{618\}. ma: Distally located; Cent...Xcdo949-4V-16cM - Pch $h_{D v}-17 \mathrm{cM}-X b c d 588-4 V\{618\}$.
94.Reaction to Tilletia caries (D.C.)Tul., T. foetida (Wallr.) Liro, T. controversa Disease: Bunt, dwarf smut, stinking smut.
Bt1. [M1\{135\}]. 2B\{1310\}. s: CS*7/White Federation 38\{1304\}. v: Albit\{129\}; Banner Berkeley\{129\}; Federation 41\{137\}; Regal \{129\}; Sherman\{137\}; White Federation 38\{1166\}; White Odessa\{137\}. v2: Columbia Bt6\{1005\}; Hussar Bt2\{135\}; Hyslop $B t 4\{733\}$; Martin Bt7\{135\}; McDermid Bt4\{734\}; Odessa Bt7\{137\}; Tyee Bt4\{022\}.
Bt2. [H\{129\}]. v: Canus\{137\}; Selection PS60-1-1075\{551\}; Selection 1403\{137\}. v2: Hussar Bt1\{135\}.
Bt3. v: Florence\{202,203\}; Ridit\{152,1000,1395\}.
Bt4. Since Bt4 and Bt6 are very similar, as well as closely linked, only Turkey 3055 should be used as a definite source of Bt4, and Rio should be used as the source of Bt6. [T\{136\}]. 1B $\{1005,1274,1285\}$. v: Bison\{1285\}; Kaw\{1285\}; Nebred\{1285\}; Omaha\{1285\}; Oveson\{1235\}; Tres \{heterogeneous\}\{023\}; Turkey 1558\{137\}; Turkey 2578\{137\}. v2: Hyslop Bt1\{733\}; McDermid Bt1\{734\}; Oro Bt7\{137\}; Turkey 3055 Bt7\{137\}; Tyee Bt1\{022\}.
Bt5. 1B\{1001\}. v: Hohenheimer\{397\}; Selection R60-3432\{551\}.
Bt6. Since Bt4 and Bt6 are very similar, as well as closely linked, only Turkey 3055 should be used as a definite source of Bt4, and Rio should be used as the source of Bt6. [R\{1418\}]. 1B $\{1005\}$. v: Rio $\{1418\}$; Turkey 10095 \& $10097\{053\}$. v2: Columbia Bt1 \{1005\}.
Bt7. [M2\{1275\}]. 2D\{1000\}. s: $\mathrm{CS}^{*} 7 /$ Cheyenne 2D\{1000\}. v: Baart\{1275\}; Cheyenne\{1000\}; Federation\{1275\}; Gallipoli $\{1000\}$; Onas $\{1275\}$; Ranee $\{1000\}$; Selection 1833\{556\}. v2: CI 7090 Bt9\{1000\}; Martin Bt1\{137\}; Odessa Bt1\{137\}; Oro Bt4\{1000\}; Turkey 3055 Bt4\{1000\}.
Bt8\{1558\}. v: PI 178210\{1558\}; Yayla $305\{1558\}$.
Bt9\{1006\}. v: PI 166910\{1006\}; PI 166921\{1006\}; PI 167822\{1006\}; Selection M692073\{551\}. v2: CI 7090 Bt7\{1000\}; Jeff Bt10\{1436\}; PI 178383 Bt10\{1006\}; Ranger Bt10\{1438\}.

Bt10\{1004\}. v: Fairview\{1183\}; PI 116301\{1004\}; PI 116306\{1004\}; Selection M692094\{551\}; Jeff Bt9\{1436\}. v2: PI 178383 Bt9\{1000\}; Ranger Bt9\{1438\};
Others $\{239,0128\}$. ma: Bt10 was completely linked with a 590 bp fragment produced by UBC primer 196\{239\}; RAPD - 1.5cM - Bt10\{763\}.
The RAPD fragment was sequenced and converted to a diagnostic PCR marker for Bt10 in \{0151\}.

95.Reaction to Tilletia indica Mitra

Disease: Karnal bunt.

Kb1 \{394\}. v: Chris\{394\}; CMH77.308 Kb2\{394\}.
Kb2\{394\}. v: PF7 113\{394\}; CMH77. 308 Kb1\{394\}; Shanghai \#8 Kb4\{394\}.
Kb3\{394\}. v: Amsel\{394\}.
Kb4\{394\}. v: Shanghai \#8 Kb2\{394\}.
Kb5\{394\}. Recessive \{394\} v: Pigeon Kb6\{394\}.
Kb6\{394\}. Recessive \{394\} v: Pigeon Kb5\{394\}.
Qkb.cnl-3B\{9956\}. ma: Located in the interval XATPase-3B - Xcdo1164-3B.
Qkb.cnl-5A.1 \{9956\}. ma: Located in the interval Xmwg2112-5A - Xcdo20-5A.
Qkb.cnl-5A.2\{9956\}. ma: Located in the interval Xabg391-5A - Xfba351-5A.

96.Reaction to Ustilago tritici (Pers.) Rostrup

Disease: Loose smut.
Ut1 $\{1073\}$. v: Florence/Aurore\{1073\}; Renfrew\{1073\}; Red Bobs\{1074\}.
Ut2\{1073\}. v: Kota\{1073\}; Little Club\{1073\}.
Ut3\{1074\}. v: Carma\{1074\}.
Ut4\{1074\}. v: Thatcher/Regent\{1074\}.
Ut-x\{1164\}. v: Biggar BSR\{1164\}. ma: Xcrc4-2B-14 cM - Ut-x - 10 cM - Xabc1532B.2\{1164\}; Xcrc4-2B.2 (Syn. Xcrc4.2) is a SCAR.
Resistance to race 19 was associated with chromosome 6A of Cadet, Kota, Thatcher and TD18 \{0208\}. In the case of Cadet, resistance was localized to 6AS $\{0208\}$.

97.Reaction to Wheat Spindle Streak Mosaic Bymovirus (WSSMV)

QTL : 79\% of the variation between Geneva (resistant) and Augusta (susceptible) was associated with markers Xbcd1095-2D and Xcdo373-2D located 12.4cM apart in chromosome 2DL \{0131\}.

98.Reaction to Wheat Streak Mosaic Virus

Wsm1 $\{379,440\}$. Derived from Thin. intermedium. 4A $\{800\}=$ T4AL.4Ai\#2S $\{391\} .4 \mathrm{D}=$ T4DL.4Ai\#2S\{391,389\}.T6AS.4Ai\#2L + T6AL-4Ai\#2S\{389\}. i: Karl ${ }^{*} 4 /$ CI $17884=$ PI $583794=$ KS93WGRC27\{440\}. v: CI $17766=$ B-6-37-1 \{391,800,1543\}; CI 17884\{391\}; KS90H445\{391\}; KS90H450\{391\}; CI17883\{389\}. ad: CI 17881; CI 17886\{391\}. su: 4Ai\#2(4A):CI 15092\{391\}; 4Ai\#2(4D):CI 17882 CI 17885\{391\}. ma: Wsm1 cosegregated with a STS amplified by the primer set STSJ15\{1456\}. . Wsm1 is located in 4Ai\#2S. CI 17882, CI 17884, CI 17885 and KS90H445 also carry a 7S chromosome substituting for 7A (See Reaction to Schizaphis graminum)

99.Reaction to Xanthomonas campestris pv. undulosa

Disease: Bacterial leaf streak
Bls1\{244\}. v: Pavon Bls2\{244\}; Mochis T88 Bls3 Bls4\{244\}; Angostura F88 Bls5\{244\}.
Bls2\{244\}. v: Pavon Bls1\{244\}.
Bls3\{244\}. v: Mochis T88 Bls1 Bls4\{244\}.
Bls4\{244\}. v: Mochis T88 Bls1 Bls3\{244\}.
Bls5\{244\}. v: Turnco F88\{244\}; Angostura F88 Bls1\{244\}.
bls1 bls2 bls3 bls4 bls5: Alondra \{244\}.

100.Resistance to Colonization by Eriophyes tulipae (Aceria tulipae)

Mite pest: Wheat curl mite.
Eriophyes tulipae is the vector of wheat streak mosaic virus (WSMV) and the wheat spot mosaic agent (WSpM).
Cmc1\{1467\}. 6DS\{1576\}. v: Ae. squarrosa CI4/Novamichurinka (= AC PGR 16635)\{1467\}; Norstar derivative\{0222\}.
Cmc2\{1573\}. Derived from Thin. elongatum. 6A = T6AS.6Ae\#2S\{389\}.5B = T5BL.6Ae\#2S\{389\}.6D \{1575\} = T6DL.6Ae\#2S\{1575,389\}. v: 875-94-2\{389\}. tr: Rescue Derivative. su: Cadet 6Ae\#2(6A)\{1575\}; Cadet 6Ae\#2(6D)\{1574\}; Rescue 6Ae\#2(6A)\{1574\}; Rescue 6Ae\#2(6B)\{1574\}; Rescue 6Ae\#2(6D). ad: Cadet + mono6Ae\#2\{1574\}; Rescue + 6Ae\#2\{1574\}.
Cmc3\{0222\}. 1A = 1AL.1RS. v: Amigo; TAM107\{0222\}. v2: KS96GRC40 Cmc4\{0222\}.
Cmc4\{0222\}. 6DS\{0222\}. v2: KS96WRC40 Cmc3\{0222\}. dv: Ae. tauschii accession\{0222\}.

